RADII OF CONVEXITY FOR CERTAIN CLASSES OF UNIVALENT ANALYTIC FUNCTIONS

O. P. Juneja and M. L. Mogra

Let $P(\alpha, \beta)$ denote the class of functions $p(z)=1+b_{1} z+\cdots$ which are analytic and satisfy the inequality $|(p(z)-1)|$ $\{2 \beta(p(z)-\alpha)-(p(z)-1)\} \mid<1$ for some $\alpha, \beta(0 \leqq \alpha<1,0<\beta \leqq 1)$ and all $z \in E=\{z:|z|<1\}$. Also, let $P_{b}(\alpha, \beta)=\left\{p \in P(\alpha, \beta)\right.$: $p^{\prime}(0)=$ $2 b \beta(1-\alpha), 0 \leqq b \leqq 1\}$. In the present paper, we determine sharp estimates for the radii of convexity for functions in the classes $R_{a}(\alpha, \beta)$ and $S_{a}^{*}(\alpha, \beta)$ where $R_{a}(\alpha, \beta)=\{f(z)=z+$ $\left.a \beta(1-\alpha) z^{2}+\cdots: f^{\prime} \in P_{a}(\alpha, \beta), \quad 0 \leqq a \leqq 1\right\}, \quad S_{a}^{*}(\alpha, \beta)=\{g(z)=z+$ $\left.2 a \beta(1-\alpha) z^{2}+\cdots: z g^{\prime} / g \in P_{a}(\alpha, \beta), \quad 0 \leqq a \leqq 1\right\}$. The results thus obtained not only sharpen and generalize the various known results but also give rise to several new results.

1. Introduction. Let P denote the class of functions

$$
\begin{equation*}
p(z)=1+b_{1} z+b_{2} z^{2}+\cdots \tag{1.1}
\end{equation*}
$$

which are analytic and satisfy $\operatorname{Re}(p(z))>0$ for $z \in E \equiv\{z:|z|<1\}$. Considerable work has been done to study the various aspects of the above mentioned class (see e.g., [11], [12] and others). Some of these results have also been extended to the class $P(\alpha)$ of functions $p(z)$ which are analytic and satisfy $\operatorname{Re}(p(z))>\alpha, 0 \leqq \alpha<1$ for $z \in E$. If $p \in P(\alpha)$, it is easily seen that $\left|b_{1}\right| \leqq 2(1-\alpha)$. Further, we note that if $\tau=\exp \left\{-i \arg b_{1}\right\}$ then $p(\tau z)=1+\left|b_{1}\right| z+\cdots$ and so while studying $P(\alpha)$, there is no loss of generality if one takes the first coefficient b_{1} in (1.1) to be nonnegative.

McCarty in [8] determined a lower bound on $\operatorname{Re} z p^{\prime}(z) / p(z)$ for functions $p(z)$ in the class $P_{b}(\alpha) \equiv\left\{p \in P(\alpha): p^{\prime}(0)=2 b(1-\alpha), 0 \leqq\right.$ $b \leqq 1\}$. He also applied the results obtained to determine the sharp estimates for the radii of convexity of the two classes $R_{a}(\alpha)$ and $S_{a}^{*}(\alpha)$ for each $\alpha \in[0,1]$ and $\alpha \in[0,1)$ where

$$
R_{a}(\alpha)=\left\{f(z)=z+a(1-\alpha) z^{2}+\cdots: f^{\prime} \in P_{a}(\alpha)\right\}
$$

and

$$
S_{a}^{*}(\alpha)=\left\{g(z)=z+2 a(1-\alpha) z^{2}+\cdots: z g^{\prime} / g \in P_{a}(\alpha)\right\} .
$$

For still another class $R_{a}^{\prime}(\alpha)$ defined by $R_{a}^{\prime}(\alpha)=\{f(z)=z+\alpha(1-$ $\left.\alpha) z^{2}+\cdots:\left|f^{\prime}(z)-1\right|<\alpha, 1 / 2<\alpha \leqq 1, z \in E\right\}$ Goel [4] determined the radius of convexity.

In the present paper, we propose an approach by which it is not only possible to have a unified study of the above mentioned

