RADII OF CONVEXITY FOR CERTAIN CLASSES OF UNIVALENT ANALYTIC FUNCTIONS

O. P. JUNEJA AND M. L. MOGRA

Let $P(\alpha, \beta)$ denote the class of functions $p(z)=1+b_1z+\cdots$ which are analytic and satisfy the inequality |(p(z)-1)/| $\{2\beta(p(z)-\alpha)-(p(z)-1)\}|<1$ for some α, β $(0\leq \alpha<1, 0<\beta\leq 1)$ and all $z\in E=\{z: |z|<1\}$. Also, let $P_b(\alpha, \beta)=\{p\in P(\alpha, \beta): p'(0)=2b\beta(1-\alpha), 0\leq b\leq 1\}$. In the present paper, we determine sharp estimates for the radii of convexity for functions in the classes $R_a(\alpha, \beta)$ and $S_a^*(\alpha, \beta)$ where $R_a(\alpha, \beta)=\{f(z)=z+a\beta(1-\alpha)z^2+\cdots: f'\in P_a(\alpha, \beta), 0\leq a\leq 1\}$, $S_a^*(\alpha, \beta)=\{g(z)=z+2a\beta(1-\alpha)z^2+\cdots: zg'/g\in P_a(\alpha, \beta), 0\leq a\leq 1\}$. The results thus obtained not only sharpen and generalize the various known results but also give rise to several new results.

1. Introduction. Let P denote the class of functions

(1.1)
$$p(z) = 1 + b_1 z + b_2 z^2 + \cdots$$

which are analytic and satisfy $\operatorname{Re}(p(z)) > 0$ for $z \in E \equiv \{z: |z| < 1\}$. Considerable work has been done to study the various aspects of the above mentioned class (see e.g., [11], [12] and others). Some of these results have also been extended to the class $P(\alpha)$ of functions p(z) which are analytic and satisfy $\operatorname{Re}(p(z)) > \alpha, 0 \leq \alpha < 1$ for $z \in E$. If $p \in P(\alpha)$, it is easily seen that $|b_1| \leq 2(1 - \alpha)$. Further, we note that if $\tau = \exp\{-i \arg b_1\}$ then $p(\tau z) = 1 + |b_1|z + \cdots$ and so while studying $P(\alpha)$, there is no loss of generality if one takes the first coefficient b_1 in (1.1) to be nonnegative.

McCarty in [8] determined a lower bound on $\operatorname{Re} zp'(z)/p(z)$ for functions p(z) in the class $P_b(\alpha) \equiv \{p \in P(\alpha): p'(0) = 2b(1-\alpha), 0 \leq b \leq 1\}$. He also applied the results obtained to determine the sharp estimates for the radii of convexity of the two classes $R_a(\alpha)$ and $S_a^*(\alpha)$ for each $a \in [0, 1]$ and $\alpha \in [0, 1)$ where

$$R_a(\alpha) = \{f(z) = z + a(1 - \alpha)z^2 + \cdots : f' \in P_a(\alpha)\}$$

and

$$S^*_{\scriptscriptstyle a}(lpha) = \{g(z) = z + 2a(1-lpha)z^{\scriptscriptstyle 2} + \cdots : zg'/g \in P_{\scriptscriptstyle a}(lpha)\}\;.$$

For still another class $R'_a(\alpha)$ defined by $R'_a(\alpha) = \{f(z) = z + a(1 - \alpha)z^2 + \cdots : |f'(z) - 1| < \alpha, 1/2 < \alpha \leq 1, z \in E\}$ Goel [4] determined the radius of convexity.

In the present paper, we propose an approach by which it is not only possible to have a unified study of the above mentioned