A NOTE ON MEASURES ON FOUNDATION SEMIGROUPS WITH WEAKLY COMPACT ORBITS

HENRY A. M. DZINOTYIWEYI AND GERARD L. G. SLEIJPEN

For an extensive class of locally compact semigroups S, foundation semigroups with identity element, we prove that two subalgebras of M(S) [the algebra of the bounded Radon measures on S] coincide. Namely, the algebra L(S), generated by the $m \in M(S)^+$ for which the orbits on the compact subsets of S are weakly compact subsets of M(S), or, equivalently, for which the translations are weakly continuous, and the algebra $M_e(S)$, generated by the $m \in M(S)^+$ for which the restrictions of the orbit of m on S to the compact subsets of S are weakly compact. In case S is a group, both these algebras consist of the bounded Radon measures that are absolutely continuous with respect to a Haar measure on S.

1. If S is a locally compact group and $m \in M(S)$ then the orbits F_m of m on all compact subsets F of $S[F_m := \{m * \overline{x} \mid x \in F\} \cup \{\overline{x} * m \mid x \in F\},\$ where \bar{x} denotes the point mass at x] are weakly compact subsets of M(S) if and only if the restrictions $S_{m|F}$ of the orbit S_m of m on S to all compact subsets F of S $[S_m|_F := \{\mu|_F | \mu \in S_m\}]$ are weakly The proof of this fact follows by observing that compact. $F^{-1}K[:=\{x \in S | Fx \cap K \neq \emptyset\}\}$ and KF^{-1} are compact as soon as both F and K are compact subsets of the group S. An arbitrary locally compact semigroup S may fail to have this compactness property and may [and actually does] give rise to two different subsets of M(S): namely, to L(S), the collection of all $m \in M(S)$ for which $F_{|m|}$ is weakly compact ($F \subseteq S$, compact), and to $M_e(S)$, the collection of all $m \in M(S)$ for which $S_{|m||F}$ is weakly compact ($F \subseteq S$, compact). Elementary properties of L(S) can be found in e.g., [1], [2], [6], and [7] and of $M_{e}(S)$ in [4]. Although, in some respects $M_{e}(S)$ has better properties than L(S) [cf. [4], e.g., (5.2) and (5.3)] L(S) is a more obvious analogue of the group algebra than $M_{\ell}(S)$: L(S) is a two sided L-ideal in M(S) [cf. [1], (3, 4) and [2], (2.6)], while, in general, $M_{e}(S)$ is only an L-subalgebra of M(S) [cf. (2.1) and [4], (2.6)].

It is natural to wonder about the relationship between L(S)and $M_{e}(S)$. In view of the inner regularity of the measures in question, it is clear that $M_{e}(S) \subseteq L(S)$. As noted above, $M_{e}(S)$ may be strictly contained in L(S), but for an important class of semigroups we can show that these collections coincide. We shall prove the following theorem.