DEDEKIND'S PROBLEM: MONOTONE BOOLEAN FUNCTIONS ON THE LATTICE OF DIVISORS OF AN INTEGER

Paul Hess

Abstract

This paper is concerned with the combinatorial problem of counting the number of distinct collections of divisors of an integer N having the property that no divisor in a collection is a multiple of any other. It is shown that if N factors into primes $N=p_{1}^{a} p_{2}^{a}{ }_{2} \cdots p_{n}^{a} n$ the number of distinct collections of divisors with the stated property does not exceed ($\sum_{i=1}^{n} a_{i}-n+3$), where M is the maximum coefficient in the expansion of the polynomial

$\left(1+x+x^{2}+\cdots+x^{a_{1}}\right)\left(1+x+x^{2}+\cdots+x^{a_{2}}\right) \cdots\left(1+x+x^{2}+\cdots+x^{a_{n}}\right)$.
In the special case where N is squarefree the problem is equivalent to that of counting the number of "Sperner families" on n letters, for which G. Hansel obtained the upper bound $3^{M_{n}}$, where M_{n} is the binomial coefficient $\binom{n}{[n / 2]}$; the result in this paper is then a generalization of Hansel's theorem to the non-squarefree case.

The problem has also been formulated as that of counting the number of families consisting of incomparable subsets of a set of n objects (the objects of course corresponding to the primes in the number-theoretic formulation), with the variation that each object may appear in a set with a specifically limited number of repetitions (these limits corresponding to the prime exponents).

Notation. Given n letters $x_{1}, x_{2}, \cdots, x_{n}$, and n positive integers $a_{1}, a_{2}, \cdots, a_{n}$, consider the lattice consisting of all terms $\left(x_{1}^{j_{1}} x_{2}^{j_{2}} \cdots x_{n}^{j_{n}}\right)$ in the polynomial $\prod_{i=1}^{n}\left(\sum_{k=0}^{\alpha_{i}} x_{i}^{k}\right)$, with the partial ordering defined $\left(x_{1}^{j_{1}} x_{2}^{j_{2}} \cdots x_{n}^{j_{n}}\right) \leqq\left(x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{n}^{k_{n}}\right)$ if $j_{i} \leqq k_{i}$ for all i. A single term $X=$ ($x_{1}^{j_{1}} x_{2}^{j_{2}} \cdots x_{n}^{j_{n}}$) in this lattice will be referred to as a "set", the empty set ϕ denoting the term with all exponents $j_{1}, j_{2}, \cdots, j_{n}$ equal to zero. If $X=\left(x_{1}^{j_{1}} x_{2}^{j_{2}} \cdots x_{n}^{j_{n}}\right.$), the notation (X, x_{k}^{c}) will indicate the set $\left(x_{1}^{j_{1}} x_{2}^{j_{2}^{2}}, \cdots x_{k}^{j_{k}+c} \cdots x_{n}^{j_{n}}\right)$, and the exponent sum $j_{1}+j_{2}+\cdots+j_{n}$ will be written $|X|$.

A monotone Boolean function is defined to be a function taking the values 0 or 1 on each set of this lattice with the property that $f(X) \leqq f(Y)$ if $X \subseteq Y$. The problem of counting the number of monotone Boolean functions on this lattice is then equivalent to the problem concerning collections of divisors of N stated at the begin-

