SOME RELATIONSHIPS BETWEEN MEASURES

Roy A. Johnson

Abstract

Suppose μ and ν are (nonnegative, countably additive) measures on the same sigma-ring. We say that ν is quasidominant with respect to μ if each measurable set contains a subset with the same ν-measure, where μ is absolutely continuous with respect to ν on that subset. In particular, ν is quasi-dominant with respect to μ if μ is sigma-finite. We say that ν is strongly recessive with respect to μ if the zero measure is the only measure that is quasi-dominant with respect to μ and less than or equal to ν. Properties of these relationships are investigated, and applications are given to purely atomic measures, to the Radon-Nikodým theorem and to a decomposition of product measures.

1. Weak singularity and absolute continuity. Let μ and ν be (nonnegative, countably additive) measures on a sigma-ring \mathscr{S}. Recall that ν is absolutely continuous with respect to μ, denoted $\nu \ll \mu$, if $\nu(E)=0$ whenever $\mu(E)=0$. If $\nu \ll \mu$ and $\mu \ll \nu$, then μ and ν are said to be equivalent and we write $\mu \sim \nu$. We say that ν is weakly singular with respect to μ, denoted $\nu S \mu$, if given E in \mathscr{S}, there exists F in \mathscr{S} such that $\nu(E)=\nu(E \cap F)$ and $\mu(F)=0$.

We shall make use of the following form of the Lebesgue Decomposition Theorem [3, Theorem 2.1 or 6, Theorem 1.1]:

Theorem 1.1. (Lebesgue Decomposition Theorem). Suppose μ and ν are measures on a sigma-ring \mathscr{S}. Then there exist measures ν_{1} and ν_{2} such that (1) $\nu=\nu_{1}+\nu_{2}$, (2) $\nu_{1} \ll \mu$ and (3) $\nu_{2} S \mu$. The measure ν_{2} is unique. We may arrange to have $\nu_{1} S \nu_{2}$, and under that requirement ν_{1} is unique also.

If ν is a measure on \mathscr{S} and $A \in \mathscr{S}$, let ν_{A} be the measure given by $\nu_{A}(E)=\nu(A \cap E)$ for all $E \in \mathscr{S}$.

Theorem 1.2. Suppose $M_{1}(\mathscr{S})$ and $M_{2}(\mathscr{S})$ are families of measures on \mathscr{S} such that the zero measure is the only measure common to both families and such that ν_{A} is in one of the families whenever ν is in that family and $A \in \mathscr{S}$. Suppose, moreover, that each measure ν on \mathscr{S} can be written as the sum of measures ν_{1} and ν_{2} such that $\nu_{1} \in M_{1}(\mathscr{S})$ and $\nu_{2} \in M_{2}(\mathscr{S})$ and $\nu_{1} S \nu_{2}$. Then $\nu \in$ $M_{2}(\mathscr{S})$ if and only if $\nu(A)=0$ whenever $\nu_{\Delta} \in M_{1}(\mathscr{S})$.

Proof. Suppose $\nu \in M_{2}(\mathscr{S})$. Then $\nu_{A} \in M_{2}(\mathscr{S})$ for all $A \in \mathscr{S}$. If

