GENERAL PEXIDER EQUATIONS (PART I): EXISTENCE OF INJECTIVE SOLUTIONS

M. A. MCKIERNAN

Given open connected Ω , $\widetilde{\Omega} \subseteq \mathbb{R}^n$ and given $T: \Omega \to \mathbb{R}$ continuous, $F: \widetilde{\Omega} \to \mathbb{R}$ strictly monotonic, in each variable separately. The equation is $h \circ T = F \circ \pi$ for the unknowns $h: T(\Omega) \to \mathbb{R}$, $\pi: \Omega \to \widetilde{\Omega}$ with $\pi = (f_1, \dots, f_n)$ a product mapping e.g., $h\{T(x, y)\} = F\{f(x), g(y)\}$. If T is one-one in each variable, then any continuous solution π must be injective or constant on Ω ; conversely, if an injective solution π exists then T must be one-one in each variable separately.

1. Introduction. Given a subset $\Omega \subseteq \mathbb{R}^n$ for $n \geq 2$, let Ω_i denote its projection on the *i*th coordinate axis. By a product mapping $\pi: \Omega \to \widetilde{\Omega} \subset \mathbb{R}^n$ is understood the restriction to Ω of a map $(f_1, \dots, f_n): X_1^n \Omega_i \to \mathbb{R}^n$ defined by *n* functions $f_i: \Omega_i \to \widetilde{\Omega}_i \subseteq \mathbb{R}$. For given $T: \Omega \to \mathbb{R}$ and $F: \widetilde{\Omega} \to \mathbb{R}$, equations of the form

$$(1) h\{T(x_1, \dots, x_n)\} = F\{f_1(x_1), \dots, f_n(x_n)\}$$

for the unknowns $h: T(\Omega) \to \mathbb{R}$ and $\pi: \Omega \to \widetilde{\Omega}$ are generalizations of Pexider equations¹. For the most part the literature concerns the case in which T and F are specified, usually the sum and/or product of the arguments. In [3] C. T. Ng recently gave a uniqueness theorem for continuous solutions π , assuming T continuous but with $F(u_1, \dots, u_n) = u_1 + \dots + u_n$; a generalization to certain topological spaces appears in Ng [4] and [2]. A simple case of (1) was used by J. Lester and the author [5] to characterize Lorentz transformations in \mathbb{R}^n .

2. Formulation of results. Given $\Omega, \widetilde{\Omega} \subseteq \mathbb{R}^n$ for $n \geq 2$ and given $T: \Omega \to \mathbb{R}, F: \widetilde{\Omega} \to \mathbb{R}$. Henceforth assume:

- (A-1) T continuous in each variable separately,
- (A-2) F one-to-one in each variable separately,
- (A-3) Ω open and connected.

THEOREM 1. With (A-1, 2, 3) assume $T \circ h = F \circ \pi$ satisfied on Ω , where $h: T(\Omega) \to \mathbf{R}$ and where $\pi: \Omega \to \widetilde{\Omega}$ is an injective product mapping. Then T must be strictly monotonic in each variable separately on Ω .

The existence of an injective solution π then places a severe ¹ For literature see [1]; J. V. Pexider studied h(x+y)=f(x)+g(y).