AN EXPLICIT FORMULA FOR THE FUNDAMENTAL UNITS OF A REAL PURE SEXTIC NUMBER FIELD AND ITS GALOIS CLOSURE

Ken Nakamula

The object of this paper is to give a set of fundamental units of a real pure sextic number field $K=\boldsymbol{Q}\left(\sqrt[6]{a^{6}-1}\right)$, where a is a special type of natural number and $a^{6}-1$ is not necessarily 6th power free. It is also shown that a set of fundamental units of the galois closure $L=K(\sqrt{-3})$ of K is formed by a real unit and its conjugates.

Let d be a 6th power free natural number which is not a perfect square or a perfect cube in the rational number field \boldsymbol{Q}. Put $\theta=\sqrt[6]{d}$; then $K=\boldsymbol{Q}(\theta)$ is a real pure sextic number field. We investigate the group of units of K for a special type of d as follows. Let d be given by

$$
\begin{equation*}
d=c\left(b^{6} c \pm 2\right)\left(b^{12} c^{2} \pm b^{6} c+1\right)\left(b^{12} c^{2} \pm 3 b^{6} c+3\right) \tag{1}
\end{equation*}
$$

with natural numbers b and c. Put

$$
\begin{equation*}
a=b^{8} c \pm 1 . \tag{2}
\end{equation*}
$$

(The \pm signs correspond respectively throughout this paper.) Then

$$
\begin{equation*}
b^{6} d=a^{6}-1 \tag{3}
\end{equation*}
$$

and $K=\boldsymbol{Q}\left(\sqrt[6]{a^{6}-1}\right)$.
Theorem 1. The notation being as above, we assume that $d>1$ and d is square free. Then

$$
\begin{equation*}
\xi_{1}=a-b \theta, \quad \xi_{2}=a+b \theta, \quad \xi_{3}=a^{2}+a b \theta+b^{2} \theta^{2} \tag{4}
\end{equation*}
$$

form a set of fundamental units of K.
As to explicit formulas for the fundamental units of number fields, G. Degert [2] has given one for certain real quadratic fields. As an application of the Jacobi-Perron algorithm (J.P.A.), L. Bernstein, H.-J. Stender and R. J. Rudman has extended Degert's result to certain real pure cubic, quartic and sextic fields (see [9] and [10]). On the other hand, H . Yokoi has given a different formula for the fundamental units of real quadratic and pure cubic number fields in [11], [12] and [13]. Theorem 1 is an extension of Yokoi's result to real pure sextic fields. A similar formula can be

