NONLINEAR SMOOTH REPRESENTATIONS OF COMPACT LIE GROUPS

M. ROTHENBERG AND J. SONDOW

We study semi-free (=free off the fixed-point set) smooth actions of a compact Lie group G on disks and spheres with fixed-point set a disk or sphere, respectively. In dimensions ≥ 6 and codimension $\neq 2$ we obtain a complete classification for such actions on disks and a partial classification for spheres, together with partial results in dimension 5 or codimension 2. We show that semi-free smooth actions of G on the *n*-disk D^n , $n \geq 6 + \dim G$, with fixed-point set an (n-k)-disk, $k \neq 2$, are classified by two invariants:

(1) a free orthogonal action of G on the $(k\mbox{-}1)\mbox{-sphere}\ S^{k-1}$ (the representation at the fixed points) and

(2) an element of the Whitehead group $Wh(\pi_o(G))$.

In fact (§ 4, Theorem A), there is a bijection τ from the set $\mathscr{D}_{\rho}^{n,k}$ of such actions, with a given representation $\rho: G \to O(k)$ at the fixed points, onto $Wh(\pi_{\circ}(G))$, and for $n-k \geq 2$, $\mathscr{D}_{\rho}^{n,k}$ is a group under equivariant boundary connected sum and τ is an isomorphism. The corresponding set $\mathscr{S}_{\rho}^{n,k}$ of actions on spheres also forms a group (§ 4, Corollary 4).

For $G = Z_m = Z/mZ$ we show (§4, Corollary 5) that these actions on D^n restrict to distinct actions on $\partial D^n = S^{n-1}$ if n-1 is odd. For n = k these actions on S^{n-1} are free (since $S^{n-k-1} = S^{-1} = \emptyset$) and, in fact, are the same as those constructed by Milnor in [20], where he used Reidemeister torsion to distinguish infinitely many of them. We observe that his later application [21, Corollary 12.13] of the Atiyah-Bott fixed-point formula [1, §7] implies they are all distinct. For n > k we use Whitehead torsion to distinguish them, employing the result of [11] and [3, Prop. 4.14] that $Wh(Z_m)$ is free abelian. (For analogous applications of Reidemeister torsion versus Whitehead torsion com- pare [19] vs. [37] and [33, 36] vs. [31].)

Thus for $m \neq 1, 2, 3, 4$ or 6, which according to [11] implies rank $Wh(Z_m) > 0$, we obtain (§ 4, Corollary 6) infinitely many different semi-free smooth actions of Z_m on every sphere of odd dimension greater than four, with fixed-point set a sphere of any even codimension at least four. These actions are not smoothly equivalent to linear actions, although they are topologically linear according to [38] and [9].

Invariant (1) of a semi-free action is equivalent to a representation $\rho: G \to O(k)$ that is "fixed-point-free", i.e., such that $\rho(g)$ has no eigenvalue equal to +1 for $g \in G$, $g \neq$ identity. The only G which