AMENABLE GROUPS FOR WHICH EVERY TOPOLOGICAL LEFT INVARIANT
 MEAN IS INVARIANT

Alan L. T. Paterson

Abstract

Let G be an amenable locally compact group. It is conjectured that every topological left invariant mean on $L_{\infty}(G)$ is (topologically) invariant if and only if $G \in[F C]^{-}$. This conjecture is shown to be true when G is discrete and when G is compactly generated.

1. Introduction. Let G be an amenable locally compact group and let $\Omega_{t}(G)\left(\Re_{t}(G)\right)$ be the set of topological left (right) invariant means on $L_{\infty}(G)$. A natural question to ask is: when does $\mathfrak{R}_{t}(G)=$ $\Re_{t}(G)$? Obviously, $\mathfrak{R}_{t}(G)=\Re_{t}(G)$ if G is compact or abelian. The results of this paper strongly support the conjecture that $\mathscr{R}_{t}(G)=$ $\Re_{t}(G)$ if and only if $G \in[F C]^{-}$, the class of those locally compact groups each of whose conjugacy classes is relatively compact. Theorem 3.2 (Theorem 4.4) establishes this conjecture when G is discrete (compactly generated).

The present writer's interest in the above question arose from his inability to prove [1, Theorem 7]. The latter result asserts that if G is an exponentially bounded discrete group, then $\Omega_{t}(G)=\Re_{t}(G)$. This result is false. (See (3.3).)

I am indebted to Dr F. W. Ponting for help in translating portions of [1].
2. Preliminaries. The cardinality of a set A is denoted $|A|$. Let G be a group. The identity of G will be denoted by e, and if $x \in G$, then $C_{x}=\left\{y x y^{-1}: y \in G\right\}$ is the conjugacy class of x in G. If $a, x \in G$, then

$$
C(x)=\{y \in G: x y=y x\}, \quad C_{a}(x)=\left\{y \in G: y x y^{-1}=a\right\} .
$$

Now let G be a locally compact group. The family of compact subsets of G is denoted by $\mathscr{C}(G)$ and the family of compact neighborhoods of e in G is denoted by $\mathscr{C}_{e}(G)$. The algebra of continuous, bounded, complex-valued functions on G is denoted by $C(G)$. Throughout the paper, λ will be a left Haar measure on G. The group G is called an $[F C]^{-}$group if C_{x} is relatively compact for all $x \in G$. The class of discrete $[F C]^{-}$groups is denoted by $[F C]$. The group G is called an [IN] group if there exists $D \in \mathscr{C}_{e}(G)$ such that $x D=$ $D x$ for all $x \in G$. (For information about the classes $[F C]^{-}$and $[I N]$,

