NOTES ON GENERALIZED BOUNDARY VALUE PROBLEMS IN BANACH SPACES, I ADJOINT AND EXTENSION THEORY

R. C. BROWN

Let $A: X \to Y$ be a densely defined closed operator where X and Y are Banach spaces. Let F be a locally convex topological vector space and $H: X \to F$ an operator such that N(H) and D(A) have nontrivial intersection and $D(H^*)$ is total over F. We compute A_H^* and A_H^* where A_H is the operator determined by A on N(H) and $A_H(x) = (Ax, Hx)^t$.

We also characterize certain closed extensions of $A_{\rm H}$ and the adjoints of these extensions. In particular application is made to the problem of determining self-adjoint extensions of symmetric operators restricted by boundary conditions in a Hilbert space.

1. Introduction. Suppose X, Y and A are as above. Let H be an operator having domain in X and range in a locally convex topological vector space (l.c.t.v.s.) F. Assume that $D(A) \cap N(H)$ is nontrivial. Then the system

$$\begin{array}{l} Ax = f \\ Hx = r \end{array}$$

is called a generalized boundary value problem (b.v.p). We call the first equation of (1.1) the operator part of the b.v.p. and the second the boundary condition. H is the boundary operator. If r = 0 the problem is said to be homogeneous, otherwise it is nonhomogeneous. In the nonhomogeneous case, (1.1) determines an operator $\mathscr{M}_H: X \to$ $Y \times F$ and in the homogeneous case an operator $A_H \subset A: X \to Y$ on

$$D(A_{H}): = \{x \in D(A): Hx = 0\}$$
.

In this paper we are going to construct the adjoints A_{II}^* and \mathscr{M}_{II}^* and compare their structure. Knowledge of A_{II}^* and \mathscr{M}_{II}^* yield at once statements of Fredholm alternative solvability conditions for the original b.v.p. We will also be interested in the following extension problem. Suppose A and B: $Y^* \to X^*$ are 1-1 and $B^* \supset A$. Let $K: Y^* \to G$ (G a l.c.t.v.s) be a boundary operator. Then (roughly speaking)

$$(1.2) A_{H} \subset A \subset B_{K}^{*} .$$

One can now ask for the structure of all closed extensions of A_{H}