ON UNIVERSAL EXTENSIONS OF DIFFERENTIAL FIELDS

E. R. Kolchin

Dedicated to Gerhard Hochschild on the occasion of his 65th birthday

The main result of this paper is the following:

THEOREM: Let \mathscr{U} be a universal extension of the differential field \mathscr{F} of characteristic zero and let \mathscr{G} be a strongly normal extension of \mathscr{F} in \mathscr{U} . Then \mathscr{U} is a universal extension of \mathscr{G} .

Introduction. We deal with differential fields, always of characteristic zero, relative to a nonempty finite set of commuting derivation operators. By an extension of a differential field, we always mean a differential field extension. An extension \mathcal{F}' of a differential field \mathcal{F} is said to be finitely generated if \mathcal{F}' has a finite subset Φ such that $\mathcal{F}' = \mathcal{F} \langle \Phi \rangle =$ the smallest extension of \mathcal{F} in \mathcal{F}' that contains Φ .

Let \mathscr{F} be a differential field. Recall that an extension \mathscr{U} of \mathscr{F} is called *universal* if, for any finitely generated extension \mathscr{F}_1 of \mathscr{F} in \mathscr{U} and any finitely generated extension \mathscr{G} of \mathscr{F}_1 not necessarily in \mathscr{U} , \mathscr{G} can be embedded in \mathscr{U} over \mathscr{F}_1 , i.e., there exists an extension of \mathscr{F}_1 in \mathscr{U} that is isomorphic (in the sense of differential fields) to \mathscr{G} over \mathscr{F}_1 . Such a universal extension of \mathscr{F} always exists ([2] p. 132, Th. 2). It is not unique, but if \mathscr{U} and \mathscr{V} are two universal extensions of \mathscr{F} , then there exist universal extensions \mathscr{U}' and \mathscr{V}' of \mathscr{F} , lying in \mathscr{U} and \mathscr{V} , respectively, such that \mathscr{U}' is isomorphic to \mathscr{V}' over \mathscr{F} ([2] p. 135, Exerc. 7).

Let \mathscr{U} be a universal extension of the differential field \mathscr{F} and let \mathscr{G} be an extension of \mathscr{F} in \mathscr{U} . Under favorable conditions, \mathscr{U} is then a universal extension of \mathscr{G} , too. For example, this is the case when \mathscr{G} is finitely generated over \mathscr{F} ([2] p. 133, Prop. 4), and also when \mathscr{G} is algebraic over \mathscr{F} ([2] p. 134, Exerc. 1). The main purpose of the present note is to point out another such favorable condition. We shall show (§1) that when \mathscr{G} is a strongly normal extension of \mathscr{F} , in the general sense of Kovacic [4] (i.e., not necessarily finitely generated), then \mathscr{U} is universal over \mathscr{G} . This result shows that, in the study of strongly normal extensions, it is not necessary to replace \mathscr{U} by a larger universal extension of \mathscr{F} (see Kovacic [4] p. 518).

Every strongly normal extension of \mathscr{F} in \mathscr{U} is embeddable over \mathscr{F} in a constrained closure of \mathscr{F} in \mathscr{U} ([3] p. 162, Th. 3 or Blum [1] p. 42 (15)) and hence, in particular, is constrained over \mathscr{F}