SUPPORT POINT FUNCTIONS AND THE LOEWNER VARIATION

Richard Pell

1. Introduction. Let $U=\{z:|z|<1\}$ and \mathscr{S} the set of functions $f, f(z)=z+a_{2} z^{2}+\cdots$, that are analytic and $1: 1$ in U. Denote by σ the collection of support point functions of \mathscr{S}, i.e., functions $f \in \mathscr{S}$ that satisfy

$$
\operatorname{Re} L(f)=\max _{g \in \mathcal{H}} \operatorname{Re} L(g)
$$

for some nonconstant continuous (in the topology of local uniform convergence) linear functional on \mathscr{S}. Finally, denote by $E(\mathscr{S})$ the set of extreme point functions of \mathscr{S}.

It is well known that if $f \in \sigma \cup E(\mathscr{S})$, then $f(U)$ is the complement of a single Jordan arc extending from some finite point to ∞ and along which $|w|$ is strictly increasing. Indeed, this has been demonstrated for the class $E(\mathscr{S})$ by L. Brickman [1] and for the class σ by A. Pfluger [5] (see also L. Brickman and D. Wilken [2]). Consequently, if $f \in \sigma \cup E(\mathscr{S})$, there is a Loewner chain

$$
f(z, t)=e^{t}\left[z+\sum_{n=2}^{\infty} a_{n}(t) z^{n}\right] \quad(0 \leqq t<\infty)
$$

with $f(z, 0)=f(z)$ and $f\left(z, t_{1}\right)$ subordinate to $f\left(z, t_{2}\right)$ if $0 \leqq t_{1}<t_{2}<\infty$ (see [6, p. 157]). Note that $e^{-t} f(z, t) \in \mathscr{S}$. Let $w(z, t)=e^{-t}(z+$ $\left.\widehat{b}_{2}(t) z^{2}+\hat{b}_{3}(t) z^{3}+\cdots\right)$ be analytic for $t \in\{t: 0 \leqq t<\infty\}$ and $z \in U, 1: 1$ in U with $|w(z, t)|<1$, and such that $f(z)=f(w(z, t), t)$ for each $t \in\{t: 0 \leqq t<\infty\}$ and all $z \in U$. Observe that we define $\widehat{w}(z, t) \equiv$ $e^{t} w(z, t)=z+\hat{b}_{2}(t) z^{2}+\cdots \in \mathscr{S}$ and that $|\hat{w}(z, t)|<e^{t}$ for $z \in U$.

In $\S 2$ it is shown that if $f \in E(\mathscr{S})$, then $e^{-t} f(z, t) \in E(\mathscr{S})$ and also that if $f \in \sigma$, then $e^{-t} f(z, t) \in \sigma$. This latter result is a generalization of a theorem due to S. Friedland and M. Schiffer [3, p. 143]. Also, in the process of generalizing this theorem a fairly easy method is established for finding for each $t, 0 \leqq t<\infty$, a continuous linear functional which $e^{-t} f(z, t)$ maximizes.
2. Preservation of the sets σ and $E(\mathscr{S})$ under the Loewner variation. It is easy to show that if $f \in E(\cdot \mathscr{S})$, then $e^{-t} f(z, t) \in$ $E(\mathscr{S})$ also. Indeed, if this were not the case, then there would exist distinct functions $f_{1}, f_{2} \in \mathscr{S}$ and $\lambda_{1}, \lambda_{2}>0$ with $\lambda_{1}+\lambda_{2}=1$ for which $\lambda_{1} f_{1}(z)+\lambda_{2} f_{2}(z)=e^{-t} f(z, t)$. This would imply that $e^{t} \lambda_{1} f_{1}(w(z$, $t))+e^{t} \lambda_{2} f_{2}(w(z, t))=f(w(z, t), t)=f(z)$. Since $e^{t} f_{1}(w(z, t))$ and $e^{t} f_{2}(w(z, t))$ are in \mathscr{S}, the fact that $f(z) \in E(\mathscr{S})$ is contradicted and therefore

