FREDHOLM THEORY OF PARTIAL DIFFERENTIAL EQUATIONS ON COMPLETE RIEMANNIAN MANIFOLDS

ROBERT C. MCOWEN

This paper studies necessary and sufficient conditions for differential operators to be Fredholm on the Sobolev spaces of a complete (not necessarily compact) Riemannian manifold Ω . The conditions are formulated algebraically in terms of the nonvanishing of the operator's principal symbol on Ω (ellipticity) and its "total symbol" at infinity of Ω . The operators considered arise by taking sums of products of vector fields, all of whose covariant derivatives vanish at infinity; and the study involves C^* -algebra techniques. The required technical restrictions on the curvature and topology of Ω near infinity are much weaker than those in earlier joint work with H. O. Cordes.

0. Introduction. Let Ω be an *n*-dimensional paracompact C^{∞} manifold with complete Riemannian metric $ds^2 = g_{ij}dx^i dx^j$ and surface measure $d\mu = \sqrt{g} dx$ where $g = \det(g_{ij})$. Let $\Delta = g^{ij} \nabla_i \nabla_j$, the Beltrami-Laplace operator on Ω , where $(g^{ij}) = (g_{ij})^{-1}$ and ∇ denotes covariant differentiation with respect to the Riemannian connection. Then $\Lambda = (1 - \Delta)^{-1/2}$ is a positive-definite operator in $\mathscr{L}(\tilde{\mathfrak{g}})$, the bounded operators over the Hilbert space $\mathfrak{G} = L^2(\Omega, d\mu)$. Define the Nth-Sobolev space $\mathfrak{G}_N \subset \mathfrak{G}$ for $N = 1, 2, \cdots$ by requiring $\Lambda^N \colon \mathfrak{G} \to \mathfrak{G}_N$ to be an isometric isomorphism. It was shown in [3] that $C_0^{\infty}(\Omega)$ is dense in each \mathfrak{G}_N .

Now suppose we are given a differential operator L on Ω , of order N, such that we obtain a bounded map $L: \mathfrak{F}_N \to \mathfrak{F}$. We may ask the question when is L Fredholm (i.e., when are ker L and coker L finite-dimensional subspaces of \mathfrak{F}_N and \mathfrak{F} respectively)? If Ω is compact, Seeley [13] showed that L is Fredholm if and only if L is elliptic (i.e., the principal symbol of L never vanishes on the cosphere bundle $S^*\Omega$). For the case $\Omega = \mathbb{R}^n$, on the other hand, ellipticity is not sufficient to imply L is Fredholm; Cordes and Herman [4] derived necessary and sufficient Fredholm criteria in terms of the "total symbol" of L.

In [4] the techniques involved considering operators $L\Lambda^N$ as generators of a C^* -algebra $\mathfrak{A} \subset \mathscr{L}(\mathfrak{H})$ which is commutative modulo the compact ideal, \mathscr{K} . The symbol of $L\Lambda^N$ is then defined as the continuous function $\sigma_{L\Lambda^N}$ on the maximal ideal space M of \mathfrak{A}/\mathscr{K} provided by the Gel'fand theory. Thus $L\Lambda^N$ is Fredholm if and only