NEIGHBORLY BUSHES AND THE RADON-NIKODÝM PROPERTY FOR BANACH SPACES

Philip W. McCartney

Abstract

We introduce the neighborly bush property (NBP). A dual Banach space has the NBP if and only if it contains a bush, but there is a Banach space with the NBP that does not contain a bush and therefore has the RadonNikodým property. Any Banach space with the NBP has a nonseparable second dual. Other related results are obtained.

A Banach space X has the Radon-Nikodým property (RNP) if and only if, for every finite measure space (Ω, Σ, μ), and each μ continuous, X-valued measure m on Σ of bounded variation, there exists a Bochner-integrable function $f: \Omega \rightarrow X$ such that

$$
m(E)=\int_{E} f d \mu \text { if } E \text { is in } \Sigma
$$

For convenience in defining "tree," we introduce the set $S=$ $\left\{(k, j): k \in N, j \in N, 1 \leqq j \leqq 2^{k-1}\right\}$, where N denotes the set of positive integers. Also, for each positive integer n, let $S_{n}=\{(k, j) \in S$: $k \leqq n\}$.

Definition 1. Let X be a Banach space and ε a positive number. A tree with separation constant ε is a function $T: S \rightarrow X$ such that, for every (k, j) in S,
(i) $T(k, j)=1 / 2[T(k+1,2 j)+T(k+1,2 j-1)]$
(Averaging Property),
(ii) $\|T(k, j)\| \leqq 1$,
(iii) $\|T(k+1,2 j)-T(k+1,2 j-1)\|>\varepsilon$
(Separation Property).
We denote $T(k, j)$ by $x^{k, j}$, and call $x^{k+1,2 j-1}$ and $x^{k+1,2 j}$ the branch points of T corresponding to the node $x^{k, j}$. The connection between the RNP and trees seems to have been noted first (implicitly) in [9] and explicitly in [11, page 222]. It follows easily from dentability that if a Banach space contains a tree, it does not have the RNP [3, page 127]. A dual space X has the RNP if and only if X does not contain a tree ([3, page 127], [11, page 222]). A Banach space has the RNP if and only if it does not contain a bush [3, page 216]. The reader who is interested in further historical information should see [1], [2], [3], and [5]. There are many other characterizations of the RNP discussed in [1], [2], and [3].

