THE FULL C*-ALGEBRA OF THE FREE GROUP ON TWO GENERATORS

MAN-DUEN CHOI

 $C^*(F_2)$ is a primitive C^* -algebra with no nontrivial projection. $C^*(F_2)$ has a separating family of finite-dimensional representations.

1. Introduction. We present a "generic" C^* -algebra in illustration of several peculiar phenomena that may occur in the theory of representations.

Let F_2 denote the free group on two generators. If π is the universal unitary representation of F_2 on a Hilbert space \mathscr{H} , then the full group C^* -algebra $C^*(F_2)$ is the C^* -subalgebra of $\mathscr{B}(\mathscr{H})$ generated by the set $\{\pi(g)\colon g\in F_2\}$ (see [4, §13.9]). Alternatively, we can re-define $C^*(F_2)$, in an operator-theoretical setting, as follows:

DEFINITION. Let U, V be two unitary operators on a Hilbert space \mathscr{H} . We say that (U, V) is a universal pair of unitaries iff for each pair of unitary operators (U_1, V_1) on a Hilbert space \mathscr{H} , the assignment

$$egin{cases} U \longmapsto U_{\scriptscriptstyle 1} \ V \longmapsto V_{\scriptscriptstyle 1} \end{cases}$$

extends to a *-homomorphism from $C^*(U, V)$ onto $C^*(U_1, V_1)$.

DEFINITION. We let $C^*(F_2)$ denote the abstract C^* -algebra which is *-isomorphic with the C^* -algebra generated by a universal pair of unitaries.

Obviously, the universal pairs of unitaries are unique up to algebraic *-isomorphic equivalence. To see the existence of a universal pair of unitaries, we may simply let

$$(*)$$
 $U = \bigoplus U_{\nu}, \quad V = \bigoplus V_{\nu}$

where (U_{ν}, V_{ν}) runs through all possible pairs of unitary operators on a fixed separable Hilbert space. By some judicious selection, it suffices to let ν run through only a countable index set. [In fact, for a general separable C^* -algebra $\mathfrak{A} \subseteq \mathscr{B}(\mathcal{H})$. There is always a projection P of countable dimension, such that $A \mapsto PAP$ is a *-isomorphism from \mathfrak{A} onto $P\mathfrak{A}P \subseteq \mathscr{B}(P\mathcal{H})$.]

The main result of this paper is concerned with various expres-