ON THE ZEROS OF CONVEX COMBINATIONS OF POLYNOMIALS

H. J. Fell

Given monic nth degree polynomials $P_{0}(z)$ and $P_{1}(z)$, let $P_{A}(z)=(1-A) P_{0}(z)+A P_{1}(z)$. If the zeros of P_{0} and P_{1} all lie in a circle \mathscr{C} or on a line L, necessary and sufficient conditions are given for the zeros of $P_{A}(0 \leq A \leq 1)$ to all lie on \mathscr{C} or L. This describes certain convex sets of monic nth degree polynomials having zeros in \mathscr{C} or L. If the zeros of P_{0} and P_{1} lie in the unit disk and P_{0} and P_{1} have real coefficients, then the zeros of $P_{A}(0 \leq A \leq 1)$ lie in the disk $|z|<\cos (\pi / 2 n) /$ $\sin (\pi / 2 n)$. A set is described which includes the locus of zeros of $P_{A}(0 \leq A \leq 1)$ as P_{0} and P_{1} vary through all monic nth degree polynomials having all their zeros in a compact set K. When K is path-connected, this locus is exactly the set described.

Given polynomials $P_{0}(z)$ and $P_{1}(z)$, let $P_{A}(z)$ denote the polynomial:

$$
P_{A}(z)=(1-A) P_{0}(z)+A P_{1}(z) .
$$

P_{A} is defined for any complex value of A and the zeros of $P_{A}(z)$ are continuous functions of A. In particular, if A is varied through the reals between 0 and 1 , the locus of zeros of $P_{A}(z)$ is a network of paths in the plane starting at the zeros of $P_{0}(z)$ and terminating in the zeros of $P_{1}(z)$. If the degree of P_{0} is higher than that of P_{1} then some of the paths of zeros must tend to infinity as A tends to one. It is the aim of this note to describe these loci of zeros when P_{0} and P_{1} are monic, have the same degree and are constrained to have their zeros on a circle, on a line or in a disk.

First, let P_{0} and P_{1} be real and have their zeros in $S^{1}=\{z \in$ $C:|z|=1\}$ where C denotes the complex numbers. The following lemma gives a necessary and sufficient condition for the locus of zeros of $P_{A}(z)$. $(0 \leqq A \leqq 1)$ to be contained in S^{1}.

Lemma 1. Let $P_{0}(z)$ and $P_{1}(z)$ be real monic polynomials of degree n with their zeros contained in $S^{1}-\{-1,1\}$. Denote the zeros of $P_{0}(z)$ by $w_{1}, w_{2}, \cdots, w_{n}$ and of $P_{1}(z)$ by $z_{1}, z_{2}, \cdots, z_{n}$ and assume:

$$
w_{i} \neq z_{j} \quad(1 \leqq i, j \leqq n)
$$

and

$$
\begin{aligned}
& 0<\arg \left(w_{i}\right) \leqq \arg \left(w_{j}\right)<2 \pi \\
& 0<\arg \left(z_{i}\right) \leqq \arg \left(z_{j}\right)<2 \pi \quad(1 \leqq i<j \leqq n) .
\end{aligned}
$$

