ON THE ZEROS OF CONVEX COMBINATIONS OF POLYNOMIALS

H. J. Fell

Given monic *n*th degree polynomials $P_0(z)$ and $P_1(z)$, let $P_A(z) = (1 - A)P_0(z) + AP_1(z)$. If the zeros of P_0 and P_1 all lie in a circle \mathscr{C} or on a line L, necessary and sufficient conditions are given for the zeros of P_A $(0 \le A \le 1)$ to all lie on \mathscr{C} or L. This describes certain convex sets of monic *n*th degree polynomials having zeros in \mathscr{C} or L. If the zeros of P_0 and P_1 lie in the unit disk and P_0 and P_1 have real coefficients, then the zeros of P_A $(0 \le A \le 1)$ lie in the disk $|z| < \cos(\pi/2n)/\sin(\pi/2n)$. A set is described which includes the locus of zeros of $P_A(0 \le A \le 1)$ as P_0 and P_1 vary through all monic *n*th degree polynomials having all their zeros in a compact set K. When K is path-connected, this locus is exactly the set described.

Given polynomials $P_0(z)$ and $P_1(z)$, let $P_A(z)$ denote the polynomial:

$$P_A(z) = (1 - A)P_0(z) + AP_1(z)$$
.

 P_A is defined for any complex value of A and the zeros of $P_A(z)$ are continuous functions of A. In particular, if A is varied through the reals between 0 and 1, the locus of zeros of $P_A(z)$ is a network of paths in the plane starting at the zeros of $P_0(z)$ and terminating in the zeros of $P_1(z)$. If the degree of P_0 is higher than that of P_1 then some of the paths of zeros must tend to infinity as A tends to one. It is the aim of this note to describe these loci of zeros when P_0 and P_1 are monic, have the same degree and are constrained to have their zeros on a circle, on a line or in a disk.

First, let P_0 and P_1 be real and have their zeros in $S^1 = \{z \in C: |z| = 1\}$ where C denotes the complex numbers. The following lemma gives a necessary and sufficient condition for the locus of zeros of $P_A(z)$. $(0 \le A \le 1)$ to be contained in S^1 .

LEMMA 1. Let $P_0(z)$ and $P_1(z)$ be real monic polynomials of degree n with their zeros contained in $S^1 - \{-1, 1\}$. Denote the zeros of $P_0(z)$ by w_1, w_2, \dots, w_n and of $P_1(z)$ by z_1, z_2, \dots, z_n and assume:

$$w_i \neq z_j \quad (1 \leq i, j \leq n)$$

and

$$egin{argge} 0 < rg(w_i) &\leq rg(w_j) < 2\pi \ 0 < rg(z_i) &\leq rg(z_j) < 2\pi \quad (1 \leq i < j \leq n) \;. \end{aligned}$$