TWO APPLICATIONS OF THE SCHUR-NEVANLINNA ALGORITHM

Abstract

Arne Stray

Two applications of the Schur-Nevanlinna algorithm are given. The first application gives new information about the Nevanlinna-Pick interpolation problem. The second application concerns the constructive approximation to bounded measurable functions on the unit circle by functions from H^{∞}.

1. Introduction. The Schur-Nevanlinna algorithm was developed by I. Schur [7] and refined by R. Nevanilnna [6] in the study of certain interpolation problems for bounded analytic functions.

The main idea in the first application is to combine Nevanlinna's algorithm with a certain uniqueness criterion due to Denjoy. This gives new information about solutions of the Nevanlinna-Pick interpolation problem.

The second application concerns the constructive approximation to bounded measurable functions on the unit circle $T=\{z:|z| \leqq 1\}$, by functions from H^{∞}. As usual, H^{∞} consists of the bounded analytic functions in the unit disc $D=\{z:|z|<1\}$. They are extended to $D \cup T$ by taking radial limits, thanks to a well known theorem of Fatou. The main tool here is Schur's algorithm [7]. Assuming the recent result about duality between H^{1} and BMO [1], our method also yields a constructive decomposition of functions f in the class BMO (functions of bounded mean oscillation). This has recently been done by P. Jones [4], using entirely different methods.
2. Nevanlinna's algorithm and Denjoy's criterion. It will be necessary to describe the results and ideas in Nevanlinna's fundamental paper [6], in some detail.

The space H^{∞} introduced above, is a Banach space with the norm $\|f\|=\sup \{|f(z)|, z \in D\}$. Let $\left\{z_{\nu}\right\}$ be a sequence of distinct points in D, and consider the interpolation problem

$$
\begin{equation*}
w\left(z_{\nu}\right)=w_{\nu}, \quad \nu=1,2, \cdots \tag{*}
\end{equation*}
$$

where $\left\{w_{\nu}\right\}$ is a specified sequence of complex numbers, and $w \in H^{\infty}$, $\|w\| \leqq 1$.

We assume that (*) has at least two solutions. Then R. Nevanlinna [6] has shown that all solutions to $\left(^{*}\right)$ are given by the following formula

