LINEAR OPERATORS FOR WHICH $T * T$ AND TT* COMMUTE III

Stephen L. Campbell

Let T be a bounded linear operator on a Hilbert space H. Let $[T]=T^{*} T-T T^{*}$. The structure of operators such that $T^{*} T$ and $T T^{*}$ commute and $\operatorname{rank}[T]<\infty$ is studied.

1. Introduction. Let T be a bounded linear operator acting on a separable Hilbert space H. Let $[T]=T^{*} T-T T^{*}$ and $(B N)=$ $\left\{T \mid T^{*} T\right.$ and $T T^{*}$ commute $\}$. As in [1] let $(B N)^{+}=\{T \mid T \in(B N)$ and T is hyponormal\}.

In [2] it is shown that if $T \in(B N)$ and rank [T] $=1$, (hence either T or T^{*} is in $\left(B N^{+}\right)$, then $T=T_{1} \oplus T_{2}$ where T_{1} is normal and T_{2} is a special type of weighted bilateral shift.

The purpose of this note is to examine the extension of this result to those $T \in(B N)$ for which rank $[T]<\infty$. The simple example [1]

$$
T=\left[\begin{array}{rrr}
0 & 0 & 1 \\
1 & 1 & 0 \\
1 & -1 & 0
\end{array}\right], \quad T T^{*}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right], \quad T^{*} T=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

of a $T \in(B N), T^{2} \notin(B N)$, shows that if rank [T] $=2$, then different behavior is possible.
2. Notation and preliminary results. The notation of this section will be kept throughout the paper. Suppose that $T \in(B N)$ and rank $[T]=r$. Then, for the correct choice of orthonormal basis we have

$$
T^{*} T=\left[\begin{array}{ll}
D_{1} & 0 \tag{1}\\
0 & P
\end{array}\right], \quad T T^{*}=\left[\begin{array}{ll}
D_{2} & 0 \\
0 & P
\end{array}\right]
$$

where $D_{1}=\operatorname{Diag}\left\{\alpha_{1}, \cdots, \alpha_{r}\right\}, D_{2}=\operatorname{Diag}\left\{\beta_{1}, \cdots, \beta_{r}\right\}$ with $\alpha_{i} \neq \beta_{i}$ for all i. Let $T=U\left(T^{*} T\right)^{1 / 2}$ be the polar factorization of T. Thus U is a partial isometry with $R(U)=R(T), N(U)=N(T)$. Note that $U\left(T^{*} T\right)^{1 / 2}=\left(T T^{*}\right)^{1 / 2} U=T$ and $T^{*} T$ and $T T^{*}$ have identical spectrum except for zero eigenvalues. Also $U U^{*}$ is the orthogonal projection onto $R(T)=N\left(T^{*}\right)^{\perp}$ while $U^{*} U$ is the orthogonal projection onto $R\left(T^{*}\right)=N(T)^{\perp}$. Now $\left(T^{*} T\right)^{1 / 2}=U^{*}\left(T T^{*}\right)^{1 / 2} U$. Thus for any polynomial $p(\lambda)$,

$$
\begin{equation*}
p\left(\left(T^{*} T\right)^{1 / 2}\right)=U^{*} p\left(\left(T T^{*}\right)^{1 / 2}\right) U+p(0)\left(I-U^{*} U\right) \tag{2}
\end{equation*}
$$

