THE TORSION GROUP OF A RADICAL EXTENSION

David Gay and William Yslas Vélez

The torsion group of a radical field extension is defined and its structure determined using a theorem of Kneser. In the case of a number field, a representation theorem is proved characterizing all abelian groups that can appear as torsion groups of a radical extension.

Let F be a field with multiplicative group F^{*}. Let K be an extension of F and let $T\left(K^{*} / F^{*}\right)$ be the torsion subgroup of K^{*} / F^{*}. In this paper we will determine the structure of the group $T\left(K^{*} / F^{*}\right)$ in case $K=F(\alpha)$ where α is a root of irreducible $x^{m}-\alpha \in F[x]$ and char $F \nmid m$. In particular, we shall prove the following:

Theorem A. For a positive integer q, let ζ_{q} denote a primitive q th root of unity. Let $x^{m}-a \in F[x]$ be irreducible with root α and $m=2^{n} m_{0}$ with m_{0} odd. For p a prime let T_{p} denote the p-torsion of $T=T\left(F(\alpha)^{*} / F^{*}\right)$. Let $\eta_{2^{n}}=\zeta_{2^{n}}+\zeta_{2^{-n}}^{-1}$. Define N to be the largest integer, if such exists, so that $\eta_{2^{N}} \in F$; otherwise, let $N=\infty$. Then

$$
T=\left\langle\alpha^{2^{2}} F^{*}\right\rangle \times T_{2} \times H
$$

where
(a) $H=\left\langle\left\{\zeta_{k} \in F(\alpha)\right.\right.$: if p is prime and $p \mid k$, then $\left.\left.\zeta_{p} \notin F\right\} F^{*}\right\rangle$;
(b) If $\zeta_{4} \notin F(\alpha) \backslash F$, then $T_{2}=\left\langle\alpha^{m_{0}} F^{*}\right\rangle$;
(c) If $\zeta_{4} \in F(\alpha) \backslash F$, then
(i) if $N=\infty, T_{2}=\left\langle\alpha^{m_{0}} \zeta_{2^{n+1}} F^{*}\right\rangle \times\left\langle\left\{\zeta_{2} t:\right.\right.$ all $\left.\left.t\right\} F^{*}\right\rangle \cong \boldsymbol{Z}_{2^{n-1}} \times \boldsymbol{Z}_{2^{\infty}}$;
(ii) if $n \leqq N<\infty, T_{2}=\left\langle\alpha^{m_{0}}\left(1+\zeta_{2^{N}} 2^{2^{N-n}} F^{*}\right\rangle \times\left\langle\left(1+\zeta_{2^{N}}\right) F^{*}\right\rangle \cong\right.$ $\boldsymbol{Z}_{2^{n-1}} \times \boldsymbol{Z}_{2^{2}}$;
(iii) if $N<n, T_{2}=\left\langle\alpha^{m_{0}} F^{*}\right\rangle \times\left\langle\alpha^{m_{0} 2^{2 n-N}}\left(1+\zeta_{2} \cdot v\right) F^{*}\right\rangle \cong \boldsymbol{Z}_{2^{n}} \times \boldsymbol{Z}_{2^{N-1}}$.

The following questions concerning the group $T\left(K^{*} / F^{*}\right)$ have already been examined for various extensions K / F :
(1) Let M be a subgroup of T containing F^{*} such that M / F^{*} is finite. When is it the case that $\left[M: F^{*}\right]=[F(M): F]$? Kummer theory [6, p. 218] says that this equation holds when the exponent of M / F^{*} is m and a primitive m th root of unity ζ_{m} is an element of F. Besicovitch [1], Mordell [9], and Siegel [13] found necessary and sufficient conditions for this equation to hold in case the only roots of unity in $F(M)$ are ± 1. Kneser [5] has generalized all of these results by proving the

Theorem. The equation $\left[M: F^{*}\right]=[F(M): F]$ holds iff, for every

