THE TORSION GROUP OF A RADICAL EXTENSION

DAVID GAY AND WILLIAM YSLAS VÉLEZ

The torsion group of a radical field extension is defined and its structure determined using a theorem of Kneser. In the case of a number field, a representation theorem is proved characterizing all abelian groups that can appear as torsion groups of a radical extension.

Let F be a field with multiplicative group F^* . Let K be an extension of F and let $T(K^*/F^*)$ be the torsion subgroup of K^*/F^* . In this paper we will determine the structure of the group $T(K^*/F^*)$ in case $K = F(\alpha)$ where α is a root of irreducible $x^m - a \in F[x]$ and char $F \nmid m$. In particular, we shall prove the following:

THEOREM A. For a positive integer q, let ζ_q denote a primitive qth root of unity. Let $x^m - a \in F[x]$ be irreducible with root α and $m = 2^n m_0$ with m_0 odd. For p a prime let T_p denote the p-torsion of $T = T(F(\alpha)^*/F^*)$. Let $\eta_{2^n} = \zeta_{2^n} + \zeta_{2^n}^{-1}$. Define N to be the largest integer, if such exists, so that $\eta_{2^N} \in F$; otherwise, let $N = \infty$. Then

$$T = \langle lpha^{_{2^n}} F^*
angle imes T_{_2} imes H$$

where

(a)
$$H = \langle \{\zeta_k \in F(\alpha) : if \ p \ is \ prime \ and \ p \ | \ k, \ then \ \zeta_p \notin F \} F^* \rangle;$$

(b) If $\zeta_4 \notin F(\alpha) \setminus F$, then $T_2 = \langle \alpha^{m_0} F^* \rangle;$
(c) If $\zeta_4 \in F(\alpha) \setminus F$, then
(i) if $N = \infty, \ T_2 = \langle \alpha^{m_0} \zeta_{2^{n+1}} F^* \rangle \times \langle \{\zeta_{2^{l}} : all \ t\} F^* \rangle \cong \mathbb{Z}_{2^{n-1}} \times \mathbb{Z}_{2^{\infty}};$
(ii) if $n \leq N < \infty, \ T_2 = \langle \alpha^{m_0} (1 + \zeta_{2^N})^{2^{N-n}} F^* \rangle \times \langle (1 + \zeta_{2^N}) F^* \rangle \cong \mathbb{Z}_{2^{n-1}} \times \mathbb{Z}_{2^N};$
(iii) if $N < n, \ T_2 = \langle \alpha^{m_0} F^* \rangle \times \langle \alpha^{m_0 2^{n-N}} (1 + \zeta_{2^N}) F^* \rangle \cong \mathbb{Z}_{2^n} \times \mathbb{Z}_{2^{N-1}}.$

The following questions concerning the group $T(K^*/F^*)$ have already been examined for various extensions K/F:

(1) Let M be a subgroup of T containing F^* such that M/F^* is finite. When is it the case that $[M: F^*] = [F(M): F]$? Kummer theory [6, p. 218] says that this equation holds when the exponent of M/F^* is m and a primitive mth root of unity ζ_m is an element of F. Besicovitch [1], Mordell [9], and Siegel [13] found necessary and sufficient conditions for this equation to hold in case the only roots of unity in F(M) are ± 1 . Kneser [5] has generalized all of these results by proving the

THEOREM. The equation $[M: F^*] = [F(M): F]$ holds iff, for every