ASYMPTOTIC PROPERTIES OF NONOSCILLATORY SOLUTIONS OF HIGHER ORDER DIFFERENTIAL EQUATIONS

W. J. Kim

Abstract

A classification of the nonoscillatory solutions based on their asymptotic properties of the differential equation $y^{(n)}+p y=0$ is discussed. In particular, the number of solutions belonging to the Kiguradze class A, is determined.

We investigate asymptotic properties of the nonoscillatory solutions of the differential equation

$$
\begin{equation*}
y^{(n)}+p y=0, \tag{E}
\end{equation*}
$$

where p is a continuous function of one sign on an interval $[a, \infty)$. Various aspects of Eq. (E) have been investigated by a number of authors [1-15]; in most cases, under the condition that the integral

$$
\begin{equation*}
I(r) \equiv \int_{a}^{\infty} x^{r}|p(x)| d x \tag{1}
\end{equation*}
$$

is either finite or infinite for some constant r. For instance, Eq. (E) is oscillatory on $[a, \infty$) if the integral (1) is infinite with $r=n-1-\varepsilon$ for some $\varepsilon>0[4,8]$. On the other hand, if $I(n-1)$ is finite, (E) is nonoscillatory; in fact, it is eventually disconjugate [9, 14, 15]. Under the same condition, results on the existence of a fundamental system of solutions possessing certain asymptotic properties have also been obtained $[5,13]$. Of particular interest to the present work, however, is the notion of class A_{p} introduced by Kiguradze [4] with the help of inequalities in Lemma 1.

A solution of (E) is said to be nonoscillatory on $[a, \infty)$ if it does not have an infinite number of zeros on $[a, \infty$). (Unless the contrary is stated, the word "solution" is used as an abbreviation for "nontrivial solution.") Eq. (E) is said to be nonoscillatory on [a, ∞) if every solution of (E) is nonoscillatory on $[a, \infty)$. If there exists a point $b \geqq a$ such that no solution of (E) has more than $n-1$ zeros on $[b, \infty)$, Eq. (E) is said to be eventually disconjugate on $[a, \infty)$.

As previous studies of Eq. (E) indicate, asymptotic properties of the solutions strongly depend on the parity of n and the sign of p. For this reason, it is convenient to classify Eq. (E) into the following four distinct classes:

$$
\begin{equation*}
n \text { even, } \quad p \geqq 0 \text {, } \tag{i}
\end{equation*}
$$

