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CLOSED ULTRAFILTERS AND REALCOMPACTNESS

TAKESI ISIWATA

We introduce some conditions which are closely related
to closed ultrafilters and establish interconnections among
these conditions and characterize realcompactness, almost
realcompactness, c-realcompactness and weak-cb*-ness ---.

We introduce some conditions which are closely related to closed
ultrafilters and establish interconnections among these conditions and
characterize realcompactness, alomost realcompactness, c-realcompact-
ness and weak-chb*-ness, - --.

Throughout this paper, by a space we mean a completely regular
Hausdorff space and all functions are continuous and we assume
familiarity with [3] whose notation and terminology will be used
througvhout. For a given space X, we denote by gX (or vX) the
Stone-Cech compactification (or realcompactification) of X. In §1, we
give definitions and preliminaries and introduce some conditions which
are closely related to closed ultrafilters. In §2, we establish inter-
connections among conditions introduced in §1. In §3, we characterize
realcompactness, almost realcompactness c-realcompactness and weak-
cb*-ness and give some examples in §4.

Notations and terminologies. N = the set of positive integers,
nbd = neighborhood, @ = the first countable ordinal, 2 = the first
uncountable ordinal, C(X) = the ring of all continuous functions on
X, Z(f) = the zero set of feC(X) where we assume 0= f <1,
Z(X) = the set of all zero sets, X* = gX — X. & (% or & resp.) =
a free closed (open or regular closed resp.) ultrafilter. F# (&%) = a
free closed (Z) ultrafilter converging to pe X*. & = the set of
all & (similarly define /7, I and R resp.), clz = {clU; Ue %} and
{F.Ja |l {F.}a | @) = a decreasing sequence of closed sets (with the
empty intersection). Similarly we define {R,},.! and {Z,}..]---
where “r¢” and “ze” denote “R, is a regular closed set” and “Z, is
a zero set” respectively.

1. Definitions and preliminaries. A family .o~ of subsets of
X is said to be stable if for any f e C(X) there is A €.%” such that
f|A is bounded. Mandelker ([10], Th. 5.1) has proved that X is
realcompact iff any stable closed family .o with the finite intersection
property has non-empty intersection and Hardy and Woods ([4], Lemma
2.6) have obtained that <Z is stable iff there is pevX — X and
F# —p. We say that % or # has CIP ifNneclA, + @ for any
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