RATIOS OF INTERPOLATING BLASCHKE PRODUCTS

Peter W. Jones

Every unimodular function on the unit circle can be uniformly approximated by ratios of interpolating Blaschke products. As a consequence, we show that points of the maximal ideal space of H^{∞} can be separated by interpolating Blaschke products.

1. Introduction. Let Δ denote the open unit disc in C and let $H^{\infty}(\Delta)$ be the Banach algebra of functions bounded and analytic on Δ . A sequence of points $\{z_j\}$ in Δ is called an interpolating sequence if for every bounded sequence $\{\alpha_j\}$ of complex numbers there is a function $F \in H^{\infty}(\Delta)$ such that

$$F(z_j) = lpha_j$$
, $j = 1, 2, \cdots$.

Lennart Carleson [1] has shown that $\{z_j\}$ is an interpolating sequence if and only if

$$\inf_j \prod_{k
eq j \atop k
eq j}
ho(z_j, \, z_k) > 0 \; .$$

Here ρ denotes the pseudo hyperbolic metric; $\rho(w, z) = |(w-z)/(1-\overline{w}z)|$ for $w, z \in \Delta$.

For an arc *I* on the unit circle *T* let |I| denote the length of *I* and let S(I) denote the shadow region of *I*, $S(I) = \{z \in \Delta : (z/|z|) \in I, 1 - |I| < |z| < 1\}$. A positive measure μ on Δ is called a Carleson measure if

$$\sup_{I} rac{1}{|I|} \mu(S\!(I)) = \|\,\mu\,\|_c < \infty$$
 ,

where the above supremum is taken over all arcs I of T. There is also a characterization of interpolating sequences in terms of Carleson measures. A sequence $\{z_j\}$ is an interpolating sequence if and only if

(i)
$$\inf_{j \neq k \atop j, k}
ho(z_j, z_k) > 0$$

and

(ii)
$$\sum (1 - |z_j|) \delta_{z_j}$$
 is a Carleson measure,

where δ_z denotes the Dirac δ measure at z.

A Blaschke product with simple zeros lying on an interpolating sequence is called an interpolating Blaschke product. The purpose