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RATIOS OF INTERPOLATING BLASCHKE PRODUCTS

PETER W. JONES

Every unimodular function on the unit circle can be
uniformly approximated by ratios of interpolating Blaschke
products. As a consequence, we show that points of the
maximal ideal space of H°° can be separated by interpolat-
ing Blaschke products.

1* Introduction* Let A denote the open unit disc in C and let
H°°(Δ) be the Banach algebra of functions bounded and analytic on
Δ. A sequence of points {zό} in Δ is called an interpolating sequence
if for every bounded sequence {ad} of complex numbers there is a
function FeH°°(Δ) such that

F{zs) = aί9 j = 1, 2, .

Lennart Carleson [1] has shown that {Zj} is an interpolating sequence
if and only if

inf Π p(zh zk) > 0 .
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Here p denotes the pseudo hyperbolic metric; p(w, z) — \ (w — z)/(l — wz) \
for w, zeΔ.

For an arc / on the unit circle T let | / | denote the length of
I and let S(I) denote the shadow region of /, S(I) — {zeA: (z/\z\) e I,
1 — 11\ < \z\ < 1}. A positive measure μ on Δ is called a Carleson
measure if

γ-μ(S(I))= \\μ\\c< - ,

where the above supremum is taken over all arcs I of T. There is
also a characterization of interpolating sequences in terms of Carleson
measures. A sequence {z5} is an interpolating sequence if and only
if

( i ) inf p{zh zk) > 0
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and

(ii) Σ (1 ~ \zj\)δzj is a Carleson measure ,

where δz denotes the Dirac δ measure at z.
A Blaschke product with simple zeros lying on an interpolating

sequence is called an interpolating Blaschke product. The purpose
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