# SOME HOMOLOGY LENS SPACES WHICH BOUND RATIONAL HOMOLOGY BALLS 

Andrew J. Casson and John L. Harer


#### Abstract

A homology lens space is a smooth closed 3-manifold $M^{3}$ with $H_{k}\left(M^{3}\right)=H_{k}(L(p, 1))$ for all $k$ ( $p$ some nonnegative integer). When $p=1 M^{3}$ is a homology 3 -sphere. It is an open question which of these homology lens spaces bound rational homology balls and of special interest which homology 3 -spheres bound contractible manifolds. In this note we answer this question for certain Seifert fibre spaces, each with three exceptional fibres.


Let $p, q, r$ and $d$ be integers. Whenever $l, m$, and $n$ can be defied by the relation $l q r+m p r+n p q=d$, there is a well-defined orientable Seifert fibre space $M^{3}(p, q, r ; d)$ with three exceptional fibres of type $(p, l),(q, m)$ and $(r, n)$. When $d=1$ and $p, q, r$ are coprime and positive, $M^{3}$ is the Brieskorn manifold $\Sigma(p, q, r)=$ $\left\{(x, y, z) \in C^{3}: x^{p}+y^{q}+z^{r}=0 ; x \bar{x}+y \bar{y}+z \bar{z}=1\right\} ;$ and when $p=1$ (so that the corresponding fibre is no longer exceptional) $M^{3}$ is a genuine lens space.

Theorem. Let ( $p, q, r ; d$ ) be in one of the following six classes:
(1) ( $p, p s \pm k, p s \pm 2 k ; k^{2}$ ) for $p$ odd
(2) $\left(p, p s-k, p s+k ; k^{2}\right)$
for $p$ even and $s$ odd
(3) $\left(p, q, s^{2}(p+q-p q)+s(2 p-p q)+p ;(s(p+q-p q)+p)^{2}\right)$
(4) $\left(p, s t+s+1, p t(s+1)-(s t+s+1) ;(p s t-(s t+s+1))^{2}\right)$
(5) $\left(p, p, 1-s ; p^{2} s^{2}\right)$
(6) $\left(p, p, 4 s+1 ; 4 p^{2} s^{2}\right)$.

If $M^{3}$ is the associated Seifert fibre space, $M^{3}$ can be realized as the boundary of a Mazur-type manifold obtained by adding a 2-handle to $S^{1} \times B^{3}$. In particular, the Brieskorn homology spheres which arise when $d=1$ bound contractible 4-manifolds.

These Brieskorn classes include $\Sigma(2,3,13), \Sigma(2,5,7)$, and $\Sigma(3,4,5)$ which are shown to bound Mazur manifolds in (1). Along the way we recover also the fact that the lens spaces $L\left(t^{2}, q t+1\right)$, for $q$ and $t$ relatively prime, bound Mazur-type 4-manifolds of the kind mentioned above.

At present we have three methods of constructing these 4 -manifolds. We will sketch two of them and prove the theorem with the third. We wish to thank A. Goalby and P. Melvin for helpful discussions.

