POINTWISE DOMINATION OF MATRICES AND COMPARISON OF \mathscr{F}_{p} NORMS

Barry Simon

Let p be a real number in $[1, \infty$) which is not an even integer. Let $N=2[p / 2]+5$. We give examples of $N \times N$ matrices A and B, so that $\left|\alpha_{i j}\right| \leqq b_{i j}$ but $\operatorname{Tr}\left(\left[A^{*} A\right]^{p / 2}\right)>$ $\operatorname{Tr}\left(\left[B^{*} B\right]^{p / 2}\right)$.

Let A and B be $N \times N$ matrices with

$$
\begin{equation*}
\left|a_{i j}\right| \leqq b_{i j} . \tag{1}
\end{equation*}
$$

If we define the p norm of a matrix by

$$
\begin{equation*}
\|A\|_{p}=\operatorname{Tr}\left(\left[A^{*} A\right]^{p / 2}\right)^{1 / p} \tag{2}
\end{equation*}
$$

then it is trivial that, if p is an even integer, then

$$
\begin{equation*}
\|A\|_{p} \leqq\|B\|_{p} \tag{3}
\end{equation*}
$$

when (1) holds. For one need only write out the trace explicitly in terms of matrix elements. In a more general context, we conjectured in [5] that (1) implies (3) whenever $p \geqq 2$. The attractiveness of this conjecture is shown by the fact that I know of at least five people other than myself who have worked on proving it.

It was thus quite surprising that Peller [3] announced that (3) fails for some infinite matrices whenever p is not an even integer. In correspondence, Peller described his counterexample which relies on his beautiful but elaborate theory of \mathscr{I}_{p} Hankel operators (4) and on a paper of Boas (2). It follows from Peller's example that (3) must fail for some finite N but it is not clear for which N. Our purpose here is to give explicit N and to avoid the complications of Peller's $\mathscr{\mathscr { p }}_{p}$-Hankel theory.

The idea of the construction is very simple. Boas [2] constructed polynomials $f(z), g(z)$ with $\int\left|f\left(e^{i \theta}\right)\right|^{p} d \theta>\int\left|g\left(e^{i \theta}\right)\right|^{p} d \theta$ even though the coefficients, a_{n}, of f and coefficients, b_{n}, of g obey $\left|a_{n}\right| \leqq b_{n}$. a and b should be thought of as Fourier coefficients of $f\left(e^{i \theta}\right)$ and $g\left(e^{i \theta}\right)$. It is obvious that for sufficiently large $N, \sum_{j=0}^{N=1}\left|f\left(e^{i j_{X}}\right)\right|^{p} \geqq \sum_{j=0}^{N-1}\left|g\left(e^{i j_{N}}\right)\right|$ where $\theta_{N}=2 \pi / N$. Again f and g should be viewed as functions on Z_{N} and the coefficients of the polynomial (if N is larger than the degrees) as Z_{N}-Fourier components. But the functions on Z_{N} are naturally imbedded in $N \times N$ matrices in such a way $\|A\|_{p}^{p}$ is just $\sum \mid f\left(\left.e^{\left.i j_{N}\right)}\right|^{p}\right.$ and so that the order (1) is equivalent to the order on Fourier coefficients.

