A CLASS OF PRIMALITY TESTS FOR TRINOMIALS WHICH INCLUDES THE LUCAS-LEHMER TEST

H. C. Williams

Abstract

When n is an odd prime, the well-known Lucas-Lehmer test gives a necessary and sufficient condition for primality of $2^{n}-1$. In this paper, primality tests of a similar character are developed for certain integers of the form $A b^{2 n}+B b^{n}-1$ and a criterion which generalizes the Lucas-Lehmer test is obtained.

1. Introduction. Let $N=2^{n}-1$ where n is an odd prime. The Lucas-Lehmer test for the primality of N reads as follows:

If we put $T_{0}=4$ and define $T_{h}(\bmod N)$ by setting $T_{k+1} \equiv T_{k}^{2}-$ $2(\bmod N)$ for $k \geqq 0$, then N is prime if and only if $N \mid T_{n-2}$.
(For proof, see [10, p. 443] or [13, p. 194]. This very elegant test has attracted a great deal of attention (see Williams [17] for a bibliography.) It is also the means by which the largest known primes have been found over the past twenty years.

While the Lucas-Lehmer criterion would only be used when n is a prime, it should be noted that it holds for any odd $n \geqq 3$. When viewed in this way, it falls into a class of primality tests characterized by the following three properties.
(i) The test is restricted to values of N given by some function involving an exponent n which usually belongs to some fixed congruence class and exceeds a certain bound.
(ii) A sequence $\left\{T_{h}: h \geqq 0\right\}$ is employed, where T_{0} is an easily calculated integer and T_{k+1} is defined $(\bmod N)$ for $k \geqq 0$ by $T_{k+1} \equiv$ $f\left(T_{k}\right)(\bmod N)$ where f is some polynomial such that $f(Z) \cong Z$.
(iii) Write $T[k]$ for T_{k} where $k=m_{i}$. Then N is prime if and only if $h\left(T\left[m_{i}\right]: 1 \leqq i \leqq \ell\right) \equiv 0(\bmod N)$ where h is a Z-valued polynomial over Z^{ℓ} for some $\iota \geqq 1$ and the m_{i} depend on n.

We say that any test with the properties i) through iii) is a primality test of Lucas-Lehmer (or LL) type. Such tests have been given for integers of the form $A c^{n}-1$ with $c=2$ (Lehmer [10, p. 445]; Riesel [11], [12]; Inkeri [5]; Stechkin [14] and with $c=3$ (Williams [16]). In this paper, we develop some tests of LL type for integers of the form $A b^{2}+B^{n} b^{n}-1$ and in particular a criterion (Theorem 2) is obtained when $b=2$ which yields a large number of examples including of original LL test ($A=2, B=0$) and the new case $A=2$, $B= \pm 3$. Further, we are able to show that an LL primality test exists even for integers of the form

