ON g-METRIZABILITY

L. FoGED

Abstract

We show that a regular topological space is g-metrizable if and only if it is weakly first countable and admits a σ locally finite k-network and that a g-metrizable space need not be g-developable.

O. Introduction. G-metrizable spaces were defined in [8], where it was also shown that a space admits a countable weak base if and only if it is weakly first countable and has a countable k network. In this paper we provide the corresponding result for g metrizable spaces and give an example of a g-metrizable space which is not g-developable. The former result is in response to a question in [8], the latter answers a question in [6]. All spaces are at least regular.

1. Definition.

1.1. Let X be a space. If Γ is a family of subsets of X and $\zeta: \Gamma \rightarrow \mathscr{P}(X)$ is a function, then the pair $\langle\Gamma, \zeta\rangle$ is a weak base for X if, in addition, the following hold:
(a) For every member G of $\Gamma, \zeta(G)$ is a subset of G.
(b) If G_{1} and G_{2} are members of Γ and x is an element of $\zeta\left(G_{1}\right) \cap \zeta\left(G_{2}\right)$, then there is a member G_{3} of Γ so that x is in $\zeta\left(G_{3}\right)$ and G_{3} is a subset of $G_{1} \cap G_{2}$.
(c) A subset U of X is open if and only if for every element x of U there is a member G of Γ so that x is in $\zeta(G)$ and U contains. G.

This definition of weak base differs from that of [1], namely, a collection $\mathscr{B}=\cup\left\{T_{x}: x \in X\right\}$ is a weak base for X if a set U is open in X precisely when for each point $x \in U$ there exists $B \in T_{x}$ such that $B \subset U$. It is easy to see that our definition is equivalent to this, for if B is as above, we let $\Gamma=\mathscr{B}$ and for $G \in \Gamma$, let $\delta(G)=$ $\left\{x: G \in T_{x}\right\}$ and if $\langle\Gamma, \delta\rangle$ is a weak base by 1.1 , then we let $T_{x}=$ $\{G: x \in \delta(G)\}$ and $\mathscr{B}=\bigcup\left\{T_{x}: x \in X\right\}$.
1.2. A space X is g-metrizable if it has a weak base $\langle\Gamma, \zeta\rangle$ where Γ is a σ-locally finite family. X is weakly first countable if X has a weak base $\langle\Gamma, \zeta\rangle$ so that the family $\{\zeta(G): G \in \Gamma\}$ is point countable or, equivalently, there is a function $B: \omega \times X \rightarrow \mathscr{P}(X)$ (called a wfc system for X) so that
(a) for all $n<\omega$ and $x \in X, B(n+1, x) \subset B(n, x)$;
(b) for all x in $X, x \in \cap\{B(n, x): n<\omega\}$

