ON THE BOUNDARY CURVES OF INCOMPRESSIBLE SURFACES

A. E. Hatcher

Let K be a knot in S^{3}, and consider incompressible (in the stronger sense of π_{1}-injective), ∂-incompressible surfaces S in the exterior of K. A question which has been around for some time is whether the boundary-slope function $S \mapsto$ m_{s} / ℓ_{s}, where m_{s} and ℓ_{S} are the numbers of times each circle of ∂S wraps around K meridionally and longitudinally, takes on only finitely many values (for fixed K). This is known to be true for certain knots: torus knots, the figure-eight knot [4], 2-bridge knots [2], and alternating knots [3]. In this paper an affirmative answer is given not just for knot exteriors, but for all compact orientable irreducible 3-manifolds M with ∂M a torus. Further, we give a natural generalization to the case when ∂M is a union of tori.

To state this more general result it is convenient to use the projective lamination space $\mathscr{P} \mathscr{L}(\partial M)$, defined in [4]. If ∂M is the union of tori T_{1}, \cdots, T_{n}, then $\mathscr{P} \mathscr{P}(\partial M)$ is the join $\mathscr{P} \mathscr{C}\left(T_{1}\right) * \cdots *$ $\mathscr{P} \mathscr{L}\left(T_{n}\right)=\boldsymbol{R} P^{1} * \cdots * \boldsymbol{R} P^{1}$, a sphere $S^{2 n-1}$. More concretely, suppose coordinates are chosen for each T_{i}. Then isotopy classes of finite systems of disjoint noncontractible simple closed curves on T_{i} are parametrized by the set \boldsymbol{Z}^{2} / \pm of pairs $(a, b) \in \boldsymbol{Z}^{2}$, where (a, b) is identified with $(-a,-b)$. So systems on ∂M are parametrized by $\left(\boldsymbol{Z}^{2} / \pm\right)^{n}$. Restricting to nonempty systems and projectivising by identifying a system with any number of parallel copies of itself, yields $\left(\boldsymbol{Z}^{2} / \pm\right)^{n}-\{0\} /(v \sim \lambda v)$. This is the same as $\left(\boldsymbol{Q}^{2} / \pm\right)^{n}-\{0\} /(v \sim \lambda v)$. The natural completion of this space is $\mathscr{P} \mathscr{L}(\partial M)=\left(\boldsymbol{R}^{2} / \pm\right)^{n}-\{0\} /$ $(v \sim \lambda v)$, clearly a sphere of dimension $2 n-1$. (We shall not be concerned with the geometrical interpretation of the points added in forming this completion.) A change of coordinates for the T_{i} 's produces a projective transformation of this $S^{2 n-1}$, so $\mathscr{P} \mathscr{L}(\partial M)$ has a natural projective structure. (For surfaces of higher genus, $\mathscr{P} \mathscr{L}$ has only a natural piecewise projective structure.)

Theorem. Let M be orientable, compact, irreducible, with ∂M a union of n tori. Then the projective classes of curve systems in ∂M which bound incompressible, ∂-incompressible surfaces in M form a dense subset of a finite (projective) polyhedron in $\mathscr{P} \mathscr{L}(\partial M)=S^{2 n-1}$ of dimension less than n.

Corollary. If $\partial M=T^{2}$, there are just a finite number of slopes

