ON THE EVALUATION OF PERMANENTS

NATÁLIA BEBIANO*

Two identities involving permanents are obtained. One of them is used to deduce in a simple way, two well known formulas for the evaluation of permanents, namely the formulas of Binet and Minc and of Ryser.

1. Notation. Let $A = [a_{ij}]$ be an $n \times n$ matrix. The permanent of A is defined by

$$ext{per}\left(A
ight) = \sum\limits_{\sigma \,\in\, S_{m{n}}} \prod\limits_{i=1}^{m{n}} a_{i\sigma\left(i
ight)}$$
 ,

where S_n is the symmetric group of degree n.

Let $\Gamma_{r,n}$ denote the set of all n^r sequences $\omega = (\omega_1, \dots, \omega_r)$ of integers satisfying $1 \leq \omega_i \leq n$. Let $Q_{r,n}$ be the set of those sequences in $\Gamma_{r,n}$ which are strictly increasing.

By G(n) we denote the set of all nondecreasing sequences of positive integers (t_1, \dots, t_k) such that $t_1 + \dots + t_k = n$.

Given an $n \times n$ matrix A and nonnegative integers $\alpha_1, \dots, \alpha_n$ $(\beta_1, \dots, \beta_n)$ satisfying $\alpha_1 + \dots + \alpha_n = n$ $(\beta_1 + \dots + \beta_n = n)$, we represent by $A(\alpha_1, \dots, \alpha_n)$ $(A(\beta_1, \dots, \beta_n))$ the matrix obtained from A by repeating its first row (column) $\alpha_1(\beta_1)$ times, its second row (column) $\alpha_2(\beta_2)$ times \dots and its *n*th row (column) $\alpha_n(\beta_n)$ times. If $\alpha_i = 0(\beta_i = 0)$ the *i*th row (column) of A is omitted.

Given an $n \times n$ matrix A and nonnegative integers $\alpha_1, \dots, \alpha_n$, β_1, \dots, β_n satisfying $\alpha_1 + \dots + \alpha_n = n$, $\beta_1 + \dots + \beta_n = n$, let $A(\alpha_1, \dots, \alpha_n; \beta_1, \dots, \beta_n)$ denote the $n \times n$ matrix obtained from Aby repeating its first row α_1 times, \dots , its *n*th row α_n times and also its first column β_1 times \dots its *n*th column β_n times. Again $\alpha_i = 0$ or $\beta_i = 0$ means that the *i*th row or the *i*th column of A is omitted.

Given the integers α_i , $1 \leq i \leq n$, such that $\sum_{i=1}^n \alpha_i = n$, let $R_{\alpha_1,\dots,\alpha_n} = (j_1,\dots,j_n)$ represent the nondecreasing sequence of non-negative integers (j_1,\dots,j_n) where *i* occurs with multiplicity α_i .

2. Two identities involving permanents. Let A be an $n \times n$ matrix and

$$Z = \prod_{i=1}^n Z_i$$

with

^{*} The author is a member of the Centro de Matemática da Universidade de Coimbra