ON THE EVALUATION OF PERMANENTS

Natália Bebiano*

Abstract

Two identities involving permanents are obtained. One of them is used to deduce in a simple way, two well known formulas for the evaluation of permanents, namely the formulas of Binet and Minc and of Ryser.

1. Notation. Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix. The permanent of A is defined by

$$
\operatorname{per}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{i \sigma(i)}
$$

where S_{n} is the symmetric group of degree n.
Let $\Gamma_{r, n}$ denote the set of all n^{r} sequences $\omega=\left(\omega_{1}, \cdots, \omega_{r}\right)$ of integers satisfying $1 \leqq \omega_{i} \leqq n$. Let $Q_{r, n}$ be the set of those sequences in $\Gamma_{r, n}$ which are strictly increasing.

By $G(n)$ we denote the set of all nondecreasing sequences of positive integers $\left(t_{1}, \cdots, t_{k}\right)$ such that $t_{1}+\cdots+t_{k}=n$.

Given an $n \times n$ matrix A and nonnegative integers $\alpha_{1}, \cdots, \alpha_{n}$ $\left(\beta_{1}, \cdots, \beta_{n}\right)$ satisfying $\alpha_{1}+\cdots+\alpha_{n}=n\left(\beta_{1}+\cdots+\beta_{n}=n\right)$, we represent by $A\left(\alpha_{1}, \cdots, \alpha_{n}\right)\left(A\left(\beta_{1}, \cdots, \beta_{n}\right)\right)$ the matrix obtained from A by repeating its first row (column) $\alpha_{1}\left(\beta_{1}\right)$ times, its second row (column) $\alpha_{2}\left(\beta_{2}\right)$ times \cdots and its nth row (column) $\alpha_{n}\left(\beta_{n}\right)$ times. If $\alpha_{i}=0\left(\beta_{i}=0\right)$ the i th row (column) of A is omitted.

Given an $n \times n$ matrix A and nonnegative integers $\alpha_{1}, \cdots, \alpha_{n}$, $\beta_{1}, \cdots, \beta_{n} \quad$ satisfying $\quad \alpha_{1}+\cdots+\alpha_{n}=n, \quad \beta_{1}+\cdots+\beta_{n}=n$, let $A\left(\alpha_{1}, \cdots, \alpha_{n} ; \beta_{1}, \cdots, \beta_{n}\right)$ denote the $n \times n$ matrix obtained from A by repeating its first row α_{1} times, \cdots, its nth row α_{n} times and also its first column β_{1} times \cdots its nth column β_{n} times. Again $\alpha_{i}=0$ or $\beta_{i}=0$ means that the i th row or the i th column of A is omitted.

Given the integers $\alpha_{i}, 1 \leqq i \leqq n$, such that $\sum_{i=1}^{n} \alpha_{i}=n$, let $R_{\alpha_{1}, \cdots \alpha_{n}}=\left(j_{1}, \cdots, j_{n}\right)$ represent the nondecreasing sequence of nonnegative integers (j_{1}, \cdots, j_{n}) where i occurs with multiplicity α_{i}.
2. Two identities involving permanents. Let A be an $n \times n$ matrix and

$$
Z=\prod_{i=1}^{n} Z_{i}
$$

with

[^0]
[^0]: * The author is a member of the Centro de Matemática da Universidade de Coimbra

