ON THE DECOMPOSITION OF REDUCIBLE PRINCIPAL SERIES REPRESENTATIONS OF *P*-ADIC CHEVALLEY GROUPS

CHARLES DAVID KEYS

In this paper we study the decomposition of principal series representations of p-adic Chevalley groups which are induced from a minimal parabolic subgroup, and determine the structure of the commuting algebras of these representations.

TABLE OF CONTENTS

Introduction	
Chapter I.	Intertwining Operators and the Commuting Algebra357
	1. The intertwining operators $A(w, \lambda)$ and $a(w, \lambda) \dots 357$
	2. The cocycle condition for $a(w, \lambda)$
	3. The Knapp-Stein R-group
Chapter II.	Classification of the <i>R</i> -groups
	1. Type A_n
	2. Type B_n
	3. Type C _n
	4. Type D_n
	5. Type E ₆
	6. Type E ₇
	7. Type E ₃
	8. Type F ₄
	9. Type G ₂
Chapter III.	On the Decomposition of $\operatorname{Ind}_B^G \lambda$
	1. Multiplicities of the irreducible components
	2. Some analysis on $L^2(V)$
References	

Introduction. Let G be a split reductive p-adic group, T a maximal split torus of G and B = TU a minimal parabolic subgroup of G. A (unitary) character λ of T may be extended trivially across U to define a character of B. The induced representation $\operatorname{Ind}_{B}^{G} \lambda$ is called a (unitary) principal series representation of G.

Let W be the Weyl group of G and choose $w \in W$. Then the representations $\operatorname{Ind}_B^G \lambda$ and $\operatorname{Ind}_B^G w\lambda$ are equivalent. The problem of constructing explicit intertwining operators $\mathfrak{a}(w, \lambda)$ between $\operatorname{Ind}_B^G \lambda$ and $\operatorname{Ind}_B^G w\lambda$ has been studied for real semi-simple Lie groups by Kunze and Stein [24, 25, 26] Schiffmann [30], Knapp [14, 15, 16] Knapp and Stein [17, 18, 19, 20, 21, 22] Harish-Chandra [10] and others. For groups defined over a *p*-adic filed \mathfrak{k} , these operators were first studied for SL(2) by Sally [28], and then for *p*-adic Chevalley groups by Winarsky [36, 37], who used them to determine necessary and