A HAUSDORFF-YOUNG INEQUALITY FOR B-CONVEX BANACH SPACES

J. BOURGAIN

A vector valued analogue of the classical Hausdorff-Young inequalities for characters of groups is obtained.

Introduction. For Banach space notions and terminology not explained here, we refer the reader to [5], [6] and the several papers which are mentioned further on. Let us start by recalling the definition of type and cotype of normed spaces. We say that a normed space X, $\| \|$ has type p (resp. cotype q) if there is a constant $M < \infty$ (resp. $\delta > 0$) such that for every integer m and every choice of vectors $(x_i)_{1 \le i \le m}$ in X

$$(\ 1\) \qquad \qquad \left\{ \int \|\sum arepsilon_i(t) x_i\,\|^2 \, dt
ight\}^{1/2} \leq M(\sum \, \|\, x_i\,\|^p)^{1/p}$$

respectively

$$(\ 2\) \qquad \qquad \left\{ \int \|\sum arepsilon_i(t) x_i\,\|^2 dt
ight\}^{1/2} \geqq \delta(\sum \|\, x_i\,\|^q)^{1/q}$$

holds, where (ε_i) denotes the sequence of Rademacker functions. Take further p_X the supremum of all types $1 \leq p \leq 2$ of X and q_X the infimum of all cotypes $2 \leq q \leq \infty$. The space X is said to have type (resp. cotype) provided $p_X > 1$ (resp. $q_X < \infty$).

The numbers p_x and q_x have a geometrical interpretation. As shown in [7], if X is an infinite dimensional Banach space, then ℓ^{p_X} and ℓ^{q_X} are both finitely representable in X (see also [8]). In particular, X has type (resp. cotype) if and only if ℓ^1 (resp. ℓ^{∞}) is not finitely representable in X. The first of those properties is also called B-convexity, a notion which was introduced in [4]. Very recently, see [12], it was proved that if X is B-convex, then p_X and q_{X^*} are conjugate exponents, i.e., $(p_X)^{-1} + (q_{X^*})^{-1} = 1$.

One may ask for an analogue of (1), (2) if the Rademacker functions (ε_i) are replaced by distinct Walsh functions $w_s = \prod_{i \in S} \varepsilon_i$ on the Cantor group $\{1, -1\}^N$ or, more generally, by characters of an arbitrary compact abelian group (integrating with respect to the Haar measure). In this spirit, we will prove

THEOREM 1. If X is a B-convex Banach space, there exist some $\tilde{p} > 1$ and $\tilde{q} < \infty$ and constants $M < \infty$, $\delta > 0$, such that

$$(\ 3\)\qquad\qquad \left\{\int \|\sum x_{\tilde{\tau}}\gamma(t)\,\|^2\,dt\right\}^{1/2}\leq M(\sum\,\|x_{\tilde{\tau}}\,\|^{\tilde{p}})^{1/\tilde{p}}$$