INTERPOLATION IN STRONGLY LOGMODULAR ALGEBRAS

RAHMAN YOUNIS

Let A be a strongly logmodular subalgebra of C(X), where X is a totally disconnected compact Hausdorff space. For s a weak peak set for A, define $A_s = \{f \in C(X): f|_s \in A \mid_s\}$. We prove the following:

THEOREM 1. Let s be a weak peak set for A. If b is an inner function such that $b|_s$ is invertible in $A|_s$ then there exists a function F in $A \cap C(X)^{-1}$ such that $F = \overline{b}$ on s.

THEOREM 2. Let s be a weak peak set for A. If $U \in C(X)$, |U| = 1 on s and dist $(U, A_s) < 1$, then there exists a unimodular function \tilde{U} in C(X) such that $\tilde{U} = U$ on s and dist $(\tilde{U}, A) < 1$.

1. Introduction. The purpose of this paper is to prove certain properties related to strongly logmodular algebras.

In their study of Local Toeplitz operators, Clancey and Gosselin [3] established one of these properties in a special case (H^{∞}) under a highly restrictive condition. In [7], the author proved this property for H^{∞} without any condition.

In the present paper, we obtain this and another property for arbitrary strongly logmodular algebras. The proofs in [3] and [7] use special properties of H^{∞} that are not shared by arbitrary strongly logmodular algebra. In the present work we use new techniques.

Let A be a strongly logmodular subalgebra of C(X), where X is a totally disconnected compact Hausdorff space. If s is a weak peak set for A, define $A_s = \{f \in C(X): f \mid_s \in A \mid_s\}$. The main results of this work are: Theorem 3.2. Let s be a weak peak set for A, and let b be an inner function such that $b \mid_s$ is invertible in $A \mid_s$. Then there exists a function F in $A \cap C(X)^{-1}$ such that $F = \overline{b}$ on s.

THEOREM 3.1. Let s be a weak peak set for A, and let u be in C(X) such that |u| = 1 on s and dist $(u, A_s) < 1$. There exists a unimodular function \tilde{u} in C(X) such that $\tilde{u} = u$ on s and dist $(\tilde{u}, A) < 1$.

2. Preliminaries. Let X be a compact Hausdorff space. We denote by $C(X)[C_R(X)]$ the space of continuous complex [real] valued functions on X. The algebra C(X) is a Banach algebra under the supremum norm $||f||_{\infty} = \sup \{|f(x)|: x \in X\}.$

Let A be a function subalgebra of C(X). A subset S of X is