ON TWO-STAGE MINIMAX PROBLEMS

Joachim Hartung

Abstract

Minimax problems are considered whose admissable sets are given implicitly as the solution sets of another minimax problem. For the solution a parametric method is proposed. Special cases of it are extensions of Courant's exterior penalty method and Tihonov's regularization method of Nonlinear Programming to minimax problems.

In solving quadratic problems explicitly, a representation of modified best approximate solutions of linear equations in Hilbert spaces is given that extends results for the usual case.

1. Introduction. Let X and Y be not empty subsets of real linear topological Hausdorff spaces \mathscr{X} and \mathscr{Y}, respectively,

$$
f: X \times Y \longrightarrow \boldsymbol{R}, \text { and } g: X \times Y \longrightarrow \boldsymbol{R}
$$

be two real valued functions on $X \times Y$, and denote $X_{f} \times Y_{f}$ the solution set of the minimax problem (X, Y, f), i.e.,

$$
\left(x_{0}, y_{0}\right) \in X_{f} \times Y_{f}: \Longleftrightarrow \bigwedge_{x \in X} \bigwedge_{y \in I} f\left(x, y_{0}\right) \leqq f\left(x_{0}, y_{0}\right) \leqq f\left(x_{0}, y\right) .
$$

Note that if $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are in $X_{f} \times Y_{f}$ then also $\left(x_{1}, y_{2}\right) \in$ $X_{f} \times Y_{f}$, being thus a product set.

Under the assumption that X_{f} and Y_{f} are not empty, we give the following

Definition 1. A two-stage minimax problem, in the notation $\mathscr{\not}_{g / f}$, is the minimax problem

$$
\mathscr{M}_{g / f}:=\left(X_{f}, Y_{f}, g / X_{f} \times Y_{f}\right) .
$$

Considering $\mathscr{M}_{g / f}$ as a two-person zero-sum game, it describes the following conflict situation: Two antagonists choose independently from each other $x \in X$, resp. $y \in Y$, and the first one gets from the second one the vector-payoff $(f(x, y), g(x, y)) \in \boldsymbol{R}^{2}$. The preference relation may be induced by the lexicographic order of \boldsymbol{R}^{2} :
$\left(x_{1}, y_{1}\right)$ is better than $\left(x_{2}, y_{2}\right)$ for the first (second) player, if $\left(f\left(x_{1}, y_{1}\right), g\left(x_{1}, y_{1}\right)\right)$ is lexicographically greater (smaller) than $\left(f\left(x_{2}, y_{2}\right)\right.$, $\left.g\left(x_{2}, y_{2}\right)\right)$. If the players are cautious, they have to take as optimal strategies the components of a solution of $\mathscr{M}_{g / f}$, provided there exists one.

Many games are of this nature; for example (see $\S \S 3,4$ and 5

