HOMEOMORPHIC CLASSIFICATION OF CERTAIN INVERSE LIMIT SPACES WITH OPEN BONDING MAPS

WILLIAM THOMAS WATKINS

Let I = [0, 1]. Let ${}^{N}f$ be the Nth degree hat function from I to I. For example, ${}^{2}f$, ${}^{3}f$, and ${}^{4}f$ are pictured below:

We are interested in classifying the spaces which are inverse limits of the unit interval using these bonding maps. In particular, for a fixed integer $N \ge 2$, we are interested in classifying (up to homeomorphism) the space D_N , which is $\lim \{I, {}^N f\}$. The main result of this paper is:

THEOREM: D_N is homeomorphic to D_M if and only if M and N have the same prime factors.

Overview. Let $D_N = \lim_{\longleftarrow} \{I, {}^N f\}$. These spaces are often called Knaster continua since D_2 is, in fact, the Knaster Bucket Handle:

Bellamy [1] and latter Oversteegen-Rogers [2] used D_6 to construct examples of tree-like continua without the fixed point property. It appears improbable that their techniques can be modified to construct a similar example from D_2 . This resurrects a question raised in a paper by J. W. Rogers, Jr.—Are there three topologically different D_N 's?

The answer, as previously stated is:

THEOREM. D_N is homeomorphic to D_M if and only if M and N have the same prime factors. (Allowing different bonding maps we will show there are precisely c topologically different Knaster type continua.)