ESTIMATES OF MEROMORPHIC FUNCTIONS AND SUMMABILITY THEOREMS

A. A. Shkalikov

The main goal of this paper is to prove the following theorem.

THEOREM 1. Let L be an unbounded operator in a Hilbert space \mathfrak{H} , having a discrete spectrum $\{\lambda_j\} \subset G = B_R \cup P_{q,h}$, where $B_R = \{\lambda : |\lambda| \leq R\}$, $P_{q,h} = \{\lambda : \operatorname{Re} \lambda \geq 0, |\lambda| > 1, |\operatorname{Im} \lambda| \leq h(\operatorname{Re} \lambda)^q$, h > 0, $-\infty < q < 1\}$, and for some $\gamma < \infty$, $L^{-1} \in \sigma_{\gamma}$. Also let the estimate

$$\|(I\lambda - L)^{-1}\| \leq Cd^{-1}(\lambda, G), \ \lambda \in G$$

hold outside the domain $G' = B_{\scriptscriptstyle R} \cup P_{\scriptscriptstyle q, 2\hbar}$, and for some a > 0, p > 0

$$\sum_{|\lambda_j| \leq t} 1 = n(t) \leq dt^p$$

provided t is sufficiently large.

Then $L \in A(\alpha, \mathfrak{H})$ for any $\alpha > \max 0$, p - (1 - q).

Besides, if the numbers a or h can be chosen arbitrarily small and p - (1 - q) > 0, then $\alpha = p - (1 - q)$ is admissible.

Introduction. Let L be an unbounded linear operator in a separable complex Hilbert space \mathfrak{H} with domain of definition $\mathscr{D}(L)$ which is dense in \mathfrak{H} , having a discrete spectrum $\sigma(L)$. Let $\{e_j\}_{j=1}^{\infty}$ be a sequence consisting of bases in the root subspaces of L, where e_j is a root vector corresponding to the eigenvalue λ_j . To each vector $x \in \mathfrak{H}$ we associate its Fourier series $\sum (x, e_j^*)e_j$ with respect to this system (not necessarily convergent), where $\{e_j^*\}$ is a system which is biorthogonal to $\{e_i\}$.

We write $L \in \mathscr{A}(\alpha, \mathfrak{M}, \mathfrak{H})$ if for an arbitrary vector x in \mathfrak{M} , where \mathfrak{M} is some linear manifold in \mathfrak{H} , the Fourier series $\sum (x, e_j^*)e_j$ is summable in \mathfrak{H} to x by the Abel method of order α with parenthesis.

If we suppose that L has no associated vectors and all its eigenvalues $\{\lambda_j\}$ lie in the sector $\Lambda_{\theta} = \{\lambda : |\arg \lambda| \leq \pi/2\theta, 1/2 \leq \theta < \infty\}$ then the Abel method of summability of order $\alpha(\alpha \leq \theta)$ consists in replacing the series $\sum (x, e_j^*)e_j$ by series

(1)
$$u_x(t) = \sum_{j=1}^{\infty} e^{-\lambda_j^{\alpha} t}(x, e_j^*) e_j;$$

it is required that for any t > 0 after possible recombination of its terms and appropriate use of parenthesis (not depending on $x \in$ \mathfrak{M} , or t > 0) this series converges in \mathfrak{H} and its sum $u_x(t)$ converges