AN ARITHMETIC POISSON FORMULA

Bruce C. Berndt

Abstract

Let $a(n)$ denote any arithmetic function. Since most arithmetic functions that are encountered are defined on only the nonnegative integers, we define $a(-n)=a(n)$ for each positive integer n. Our objective is to develop a Poisson type formula for $\sum_{n=-\infty}^{\infty} a(n) f(n)$, where f belongs to a suitable class of functions. We conclude the paper with several applications of our arithmetic Poisson formula.

In another paper [2], the author has used a new technique in contour integration to examine infinite series of the type $\sum_{n=0}^{\infty} a(n) f(n)$, where now f is a suitable rational function. The author's method has been generalized and improved by Krishnaiah and Sita Rama Chandra Rao [5].

Let $b(n)$ be an arithmetic function, and let S denote any subset of the natural numbers. Define, for each positive integer m,

$$
\begin{equation*}
a(m, n ; S)=\sum_{\substack{d \leq m \\ d \mid n \\ d \in S}} b(d) \quad \text { and } \quad a(n ; S)=\sum_{\substack{d \backslash n \\ d \in S}} b(d) \tag{1}
\end{equation*}
$$

Clearly, if $m \geqq n, a(m, n ; S)=a(n ; S)$. If S is the set of all positive integers, we write $a(n ; S)=a(n)$. Alternatively, given an arithmetic function $a(n)$, we could define $b(n)$ by

$$
b(n)=\sum_{d \backslash n} \mu(d) a(n / d),
$$

where μ denotes the Möbius function.
There exist several formulations of Poisson's summation formula

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} f(n)=\sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} f(x) e^{2 \pi i n x} d x \tag{2}
\end{equation*}
$$

in the literature, where here and in the sequel all doubley infinite sums are interpreted symmetrically, i.e., as $\lim _{N \rightarrow \infty} \sum_{n=-N}^{N}$. We shall choose the setting (with slightly stronger hypotheses) from Bellman's book [1, p. 8]. Thus, let $f(x)$ be continuous on $(-\infty, \infty)$, suppose that $f \in L^{1}(-\infty, \infty)$, and assume that the left and right sides of (2) converge absolutely. Then (2) holds.

Theorem. Suppose that f satisfies the conditions of Poisson's formula (2) as specified above. Let $a(n)$ and $b(n)$ denote arithmetic functions as related above. Assume also that $\sum_{n=-\infty}^{\infty} a(n) f(n)$ is absolutely convergent. Then

