EXTENSIONS OF THEOREMS OF CUNNINGHAM-AIGNER AND HASSE-EVANS

RICHARD H. HUDSON AND KENNETH S. WILLIAMS

If k is a positive integer and p is a prime with $p \equiv 1 \pmod{2^k}$, then $2^{(p-1)/2^k}$ is a 2^k th root of unity modulo p. We consider the problem of determining $2^{(p-1)/2^k}$ modulo p. This has been done for k = 1, 2, 3 and the present paper treats k = 4 and 5, extending the work of Cunningham, Aigner, Hasse, and Evans.

1. Introduction. When k = 1, we have the familiar result

(1.1)
$$2^{(p-1)/2} \equiv \begin{cases} +1 \pmod{p}, & \text{if } p \equiv 1, 7 \pmod{8}, \\ -1 \pmod{p}, & \text{if } p \equiv 3, 5 \pmod{8}. \end{cases}$$

When k = 2 and $p \equiv 1 \pmod{4}$, there are integers $a \equiv 1 \pmod{4}$ and $b \equiv 0 \pmod{2}$ such that $p = a^2 + b^2$, with a and |b| unique. If $b \equiv 0 \pmod{4}$ (so that $p \equiv 1 \pmod{8}$), Gauss [8: p. 89] (see also [4], [16]) has shown that

(1.2)
$$2^{(p-1)/4} \equiv \begin{cases} +1 \pmod{p}, & \text{if } b \equiv 0 \pmod{8}, \\ -1 \pmod{p}, & \text{if } b \equiv 4 \pmod{8}. \end{cases}$$

If $b \equiv 2 \pmod{4}$ (so that $p \equiv 5 \pmod{8}$), we can choose $b \equiv -2 \pmod{8}$, by changing the sign of b, if necessary, and Gauss [8: p. 89] (see also [4], [11: p. 66], [16]) has shown that

(1.3)
$$2^{(p-1)/4} \equiv -b/a \pmod{p}.$$

We note that $(-b/a)^2 \equiv -1 \pmod{p}$.

When k = 3 and $p \equiv 1 \pmod{8}$, there are integers $a \equiv 1 \pmod{4}$ and $b \equiv 0 \pmod{4}$ such that $p = a^2 + b^2$, with a and |b| unique. Now $\{2^{(p-1)/8}\}^4 = 2^{(p-1)/2} \equiv 1 \pmod{p}$, as $p \equiv 1 \pmod{8}$, so $2^{(p-1)/8}$ is a 4th root of unity modulo p. If $b \equiv 0 \pmod{8}$, Reuschle [14] conjectured and Western [15] (see also [16]) proved that

(1.4)
$$2^{(p-1)/8} \equiv \begin{cases} (-1)^{(p-1)/8} \pmod{p}, & \text{if } b \equiv 0 \pmod{16}, \\ (-1)^{(p+7)/8} \pmod{p}, & \text{if } b \equiv 8 \pmod{16}. \end{cases}$$

If $b \equiv 4 \pmod{8}$, we can choose $b \equiv 4(-1)^{(p+7)/8} \pmod{16}$, by changing the sign of b, if necessary, and Lehmer [11: p. 70] has shown that

(1.5)
$$2^{(p-1)/8} \equiv -\frac{b}{a} \pmod{p}.$$