EXTENSIONS OF THEOREMS OF CUNNINGHAM-AIGNER AND HASSE-EVANS

Richard H. Hudson and Kenneth S. Williams

Abstract

If k is a positive integer and p is a prime with $p \equiv 1\left(\bmod 2^{k}\right)$, then $2^{(p-1) / 2^{k}}$ is a 2^{k} th root of unity modulo p. We consider the problem of determining $2^{(p-1) / 2^{k}}$ modulo p. This has been done for $k=1,2,3$ and the present paper treats $k=4$ and 5 , extending the work of Cunningham, Aigner, Hasse, and Evans.

1. Introduction. When $k=1$, we have the familiar result

$$
2^{(p-1) / 2} \equiv \begin{cases}+1(\bmod p), & \text { if } p \equiv 1,7(\bmod 8) \tag{1.1}\\ -1(\bmod p), & \text { if } p \equiv 3,5(\bmod 8)\end{cases}
$$

When $k=2$ and $p \equiv 1(\bmod 4)$, there are integers $a \equiv 1(\bmod 4)$ and $b \equiv 0(\bmod 2)$ such that $p=a^{2}+b^{2}$, with a and $|b|$ unique. If $b \equiv 0$ $(\bmod 4)($ so that $p \equiv 1(\bmod 8)$), Gauss $[8: \operatorname{p.~89]}($ see also [4], [16]) has shown that

$$
2^{(p-1) / 4} \equiv \begin{cases}+1(\bmod p), & \text { if } b \equiv 0(\bmod 8) \tag{1.2}\\ -1(\bmod p), & \text { if } b \equiv 4(\bmod 8)\end{cases}
$$

If $b \equiv 2(\bmod 4)($ so that $p \equiv 5(\bmod 8))$, we can choose $b \equiv-2(\bmod 8)$, by changing the sign of b, if necessary, and Gauss [8: p. 89] (see also [4], [11: p. 66], [16]) has shown that

$$
\begin{equation*}
2^{(p-1) / 4} \equiv-b / a(\bmod p) \tag{1.3}
\end{equation*}
$$

We note that $(-b / a)^{2} \equiv-1(\bmod \mathrm{p})$.
When $k=3$ and $p \equiv 1(\bmod 8)$, there are integers $a \equiv 1(\bmod 4)$ and $b \equiv 0(\bmod 4)$ such that $p=a^{2}+b^{2}$, with a and $|b|$ unique. Now $\left\{2^{(p-1) / 8}\right\}^{4}=2^{(p-1) / 2} \equiv 1(\bmod p)$, as $p \equiv 1(\bmod 8)$, so $2^{(\mathrm{p}-1) / 8}$ is a 4 th root of unity modulo p. If $b \equiv 0(\bmod 8)$, Reuschle [14] conjectured and Western [15] (see also [16]) proved that

$$
2^{(p-1) / 8} \equiv \begin{cases}(-1)^{(p-1) / 8}(\bmod p), & \text { if } b \equiv 0(\bmod 16) \tag{1.4}\\ (-1)^{(p+7) / 8}(\bmod p), & \text { if } b \equiv 8(\bmod 16)\end{cases}
$$

If $b \equiv 4(\bmod 8)$, we can choose $b \equiv 4(-1)^{(p+7) / 8}(\bmod 16)$, by changing the sign of b, if necessary, and Lehmer [11: p. 70] has shown that

$$
\begin{equation*}
2^{(p-1) / 8} \equiv-\frac{b}{a}(\bmod p) \tag{1.5}
\end{equation*}
$$

