LIFTING GROUP HOMOMORPHISMS

RICHARD HARTLEY

If a knot K has Alexander polynomial different from 1, then its knot group, G maps onto some metacyclic group, $Z_r \otimes Z_p$. We show that in that case, it also has a homomorphism onto a split extension of a free abelian group of rank p-1 by $Z_r \otimes Z_p$, and hence also onto a split extension of a direct sum of p-1 cyclic groups of order s by the metacyclic group. In many cases, (such as if s is coprime with p), this group can be specified exactly. Otherwise there are a finite number of possibilities. A special case is Perko's result that a homomorphism of a knot group onto $S_3 = Z_2 \otimes Z_3$ lifts to $S_4 = Z_2 \otimes Z_3 \otimes (Z_2 \oplus Z_2)$.

As an application we obtain information about the derived series of G.

In a final section it is shown how to associate a rational polynomial invariant to every metacyclic representation.

1. Lifting metacyclic representations. Let p be a prime, r a divisor of p-1 and β a primitive r th root modulo p. Let $E = Z_r \bigotimes Z_p = \langle Y, S:$ $Y^r = S^p = 1, Y^{-1}SY = S^{\beta} \rangle$. Up to isomorphism, the group is independent of β . Let G be the knot group of a knot, K, in the 3-sphere, S^3 , and let ϕ be a homomorphism of G onto E which takes a meridian, m, of K to Y^aS^b . Then g.c.d. (a, r) = 1, since G is generated by conjugates of m. Setting $X = Y^aS^b$ and eliminating Y, we obtain a presentation

$$E = \langle X, S \colon X^r = S^p = 1, X^{-1}SX = S^{\alpha} \rangle,$$

where $\alpha = \beta^{\alpha}$ and $m\phi = X$. We describe this situation by saying that ϕ maps G onto $E(\alpha)$, meaning that $(m\phi)^{-1}Sm\phi = S^{\alpha}$. The following condition is well known: [6, 3]

(1.1) G maps onto $E(\alpha)$ if and only if p divides $\Delta(\alpha)$ where Δ is the Alexander polynomial of K.

We assume throughout this paper that ϕ maps G onto $E(\alpha)$.

Let η be a primitive *p*th root of unity, and *Q* the rational numbers. Then $Q(\eta)$ can be given the structure of an *E*-module by

(1.2)
$$V^{S} = V.\eta$$
 and $V^{X} = V\sigma$

for $V \in Q(\eta)$, where σ is the Galois automorphism of $Q(\eta)$ determined by $\eta \sigma = \eta^{\alpha}$. (Module action is denoted by writing the element of *E* as a superscript.)