LIFTING GROUP HOMOMORPHISMS

Richard Hartley

Abstract

If a knot K has Alexander polynomial different from 1, then its knot group, G maps onto some metacyclic group, $Z_{r} Q Z_{p}$. We show that in that case, it also has a homomorphism onto a split extension of a free abelian group of rank $p-1$ by $Z_{r} \otimes Z_{p}$, and hence also onto a split extension of a direct sum of $p-1$ cyclic groups of order s by the metacyclic group. In many cases, (such as if s is coprime with p), this group can be specified exactly. Otherwise there are a finite number of possibilities. A special case is Perko's result that a homomorphism of a knot group onto $S_{3}=Z_{2} \varnothing Z_{3}$ lifts to $S_{4}=Z_{2} \varnothing Z_{3} Q\left(Z_{2} \oplus Z_{2}\right)$.

As an application we obtain information about the derived series of G.

In a final section it is shown how to associate a rational polynomial invariant to every metacyclic representation.

1. Lifting metacyclic representations. Let p be a prime, r a divisor of $p-1$ and β a primitive r th root modulo p. Let $E=Z_{r} Q Z_{p}=\langle Y, S$: $\left.Y^{r}=S^{p}=1, Y^{-1} S Y=S^{\beta}\right\rangle$. Up to isomorphism, the group is independent of β. Let G be the knot group of a knot, K, in the 3 -sphere, S^{3}, and let ϕ be a homomorphism of G onto E which takes a meridian, m, of K to $Y^{a} S^{b}$. Then g.c.d. $(a, r)=1$, since G is generated by conjugates of m. Setting $X=Y^{a} S^{b}$ and eliminating Y, we obtain a presentation

$$
E=\left\langle X, S: X^{r}=S^{p}=1, X^{-1} S X=S^{\alpha}\right\rangle
$$

where $\alpha=\beta^{a}$ and $m \phi=X$. We describe this situation by saying that ϕ maps G onto $E(\alpha)$, meaning that $(m \phi)^{-1} S m \phi=S^{\alpha}$. The following condition is well known: $[6,3]$
(1.1) G maps onto $E(\alpha)$ if and only if p divides $\Delta(\alpha)$ where Δ is the Alexander polynomial of K.

We assume throughout this paper that ϕ maps G onto $E(\alpha)$.
Let η be a primitive p th root of unity, and Q the rational numbers. Then $Q(\eta)$ can be given the structure of an E-module by

$$
\begin{equation*}
V^{S}=V \cdot \eta \quad \text { and } \quad V^{X}=V \boldsymbol{\sigma} \tag{1.2}
\end{equation*}
$$

for $V \in Q(\eta)$, where σ is the Galois automorphism of $Q(\eta)$ determined by $\eta \sigma=\eta^{\alpha}$. (Module action is denoted by writing the element of E as a superscript.)

