PETTIS INTEGRATION VIA THE STONIAN TRANSFORM

F. DENNIS SENTILLES AND ROBERT F. WHEELER

Let (Ω, Σ, μ) be a finite measure space, and let f be a bounded weakly measurable function from Ω into a Banach space X. Let S be the Stone space of the measure algebra $\Sigma/\mu^{-1}(0)$. Then f induces a continuous map $\hat{f}: S \to (X^{**}, \text{weak}^*)$ in a natural way. Criteria for Pettis integrability of f are investigated in the context of this "Stonian transform" \hat{f} of f. In particular, some insight is achieved as to how f can be Pettis integrable without being weakly equivalent to any strongly measurable function. The fine structure of (X^{**}, weak^*) is also examined in this setting.

Let (Ω, Σ, μ) be a complete probability space, X a real Banach space, $f: \Omega \to X$ a function with bounded range. Then f is said to be strongly measurable if there is a sequence (f_n) of measurable X-valued simple functions on Ω such that $||f_n(w) - f(w)|| \to 0$ a.e. (μ) . In this case, the Bochner integral of f over $E \in \Sigma$ is given by $\int_E f d\mu = \lim_{x \to \infty} \int_E f_n d\mu$, where the integral of a simple function is defined in the obvious way. This integral has been extensively studied; the principal results are recorded in the monograph of Diestel and Uhl [3].

There is another concept of measurability and integrability which is less well understood. A bounded function $f: \Omega \to X$ is weakly measurable if $x^* \circ f$ is a measurable scalar-valued function on Ω for each $x^* \in X^*$, the dual space of X. If $E \in \Sigma$, then the Dunford integral of f over E is the member x_E^{**} of X^{**} defined by $x_E^{**}(x^*) = \int_E x^* \circ f d\mu$. If x_E^{**} is a member of X, for each $E \in \Sigma$, then f is said to be Pettis integrable, and we write $x_E = (P) \int_E f d\mu$ for the integral. This notion was originally studied by Pettis [18]; again the classical results are recorded in [3]. Recently there has been considerable progress in the study of the Pettis integral [6, 7, 8, 9, 10, 24, 27, 28].

In this work we analyze the nature of Pettis integrability by converting measurability into continuity. Let S be the Stone representation space of the measure algebra $\Sigma/\mu^{-1}(0)$, and let $h \to \hat{h}$ be the usual isometry between $L^{\infty}(\Omega, \Sigma, \mu)$ and C(S). Then the Stonian transform of $f: \Omega \to X$ is the function $\hat{f}: S \to X^{**}$ defined by $\langle \hat{f}(s), x^* \rangle = \widehat{x^* \circ f}(s)$, for all $x^* \in X^*$ [26]. Clearly \hat{f} is continuous when X^{**} is given the weak*-topology. We consider the questions: (a) Can \hat{f} actually be computed in a meaningful