APPROPRIATE CROSS-SECTIONALLY SIMPLE FOUR-CELLS ARE FLAT

Steve Pax

Abstract

When X is a set in E^{n}, we let $X_{t}=X \cap H_{t}$-where H_{t} is the horizontal hyperplane in E^{n} of height t. In this note, we prove that a 4-cell B in E^{4}, such that each nonempty slice B_{t} is either a point or a 3-cell, is flat whenever, for all t, B_{t} is flat in H_{t} and Bd B_{t} is flat in Bd B.

1. Introduction and summary. Throughout, we let H_{t} denote the horizontal hyperplane in E^{n} at height t, and when X is a set in E^{n}, we let $X_{t}=X \cap H_{t}$. In [10], it is proved that an ($n-1$)-sphere S in $E^{n}(n>5)$ such that each nonempty slice S_{t} is either an $(n-2)$-sphere or a point has a 1-ULC complement whenever, for all t, S_{t} is flat in both H_{t} and S; subsequently, in [9] and [11] (see also [17]), $(n-1)$-spheres in $E^{n}(n>4)$ with 1-ULC complements were shown to be flat. The necessity of these conditions is discussed in [10] and [12]. Similarly, a 2-sphere in E^{3} such that each nonempty slice is a point or a 1 -sphere was earlier shown to be flat in [13] and [14] with each relying upon the 1-ULC taming theorem of [3]. In this note, we extend this work to the case $n=4$ by solving a similar question for a 4-cell; specifically, we prove the following:

Theorem. A 4-cell B in E^{4}, such that each nonempty slice B_{t} is either a point or a 3 -cell, is flat whenever, for all t, B_{t} is flat in H_{t} and $\mathrm{Bd} B_{t}$ is flat in Bd B.

The proof relies upon a condition-first described to us by R. J. Daverman in 1976-under which an n-cell in E^{n} is flat; Lemma 1 presents it. We include a proof because no reference contains the result; when $n>4$, it is superceded by the 1-ULC taming theorems of [3], [9], and [11]; yet when $n=4$, it has utility. (Daverman has pointed out that its hypotheses are strong enough to make the argument in Chernavskii [7] work too.)

Lemma 1. Let B be a 4 -cell in E^{4}. If for each $\varepsilon>0$ there exists an ε-self-homeomorphism h of E^{4} supported in the ε-neighborhood of $E^{4}-B$ such that $h(\mathrm{Bd} B) \cap B=\varnothing$, then B is flat.

