APPROPRIATE CROSS-SECTIONALLY SIMPLE FOUR-CELLS ARE FLAT

STEVE PAX

When X is a set in E^n , we let $X_t = X \cap H_t$ —where H_t is the horizontal hyperplane in E^n of height t. In this note, we prove that a 4-cell B in E^4 , such that each nonempty slice B_t is either a point or a 3-cell, is flat whenever, for all t, B_t is flat in H_t and Bd B_t is flat in Bd B.

1. Introduction and summary. Throughout, we let H_t denote the horizontal hyperplane in E^n at height t, and when X is a set in E^n , we let $X_t = X \cap H_t$. In [10], it is proved that an (n - 1)-sphere S in E^n (n > 5) such that each nonempty slice S_t is either an (n - 2)-sphere or a point has a 1-ULC complement whenever, for all t, S_t is flat in both H_t and S; subsequently, in [9] and [11] (see also [17]), (n - 1)-spheres in E^n (n > 4) with 1-ULC complements were shown to be flat. The necessity of these conditions is discussed in [10] and [12]. Similarly, a 2-sphere in E^3 such that each nonempty slice is a point or a 1-sphere was earlier shown to be flat in [13] and [14] with each relying upon the 1-ULC taming theorem of [3]. In this note, we extend this work to the case n = 4 by solving a similar question for a 4-cell; specifically, we prove the following:

THEOREM. A 4-cell B in E^4 , such that each nonempty slice B_t is either a point or a 3-cell, is flat whenever, for all t, B_t is flat in H_t and Bd B_t is flat in Bd B.

The proof relies upon a condition—first described to us by R. J. Daverman in 1976—under which an *n*-cell in E^n is flat; Lemma 1 presents it. We include a proof because no reference contains the result; when n > 4, it is superceded by the 1-ULC taming theorems of [3], [9], and [11]; yet when n = 4, it has utility. (Daverman has pointed out that its hypotheses are strong enough to make the argument in Chernavskii [7] work too.)

LEMMA 1. Let B be a 4-cell in E^4 . If for each $\varepsilon > 0$ there exists an ε -self-homeomorphism h of E^4 supported in the ε -neighborhood of $E^4 - B$ such that $h(\operatorname{Bd} B) \cap B = \emptyset$, then B is flat.