FORMAL REDUCTION THEORY OF MEROMORPHIC DIFFERENTIAL EQUATIONS: A GROUP THEORETIC VIEW

DONALD G. BABBITT AND V. S. VARADARAJAN

One of the main goals of this paper is to develop an algorithm for reducing the first order (singular) system of differential equations:

(†)
$$\frac{df}{dz} = A(z)f$$

to a Turrittin-Levelt canonical form. Here $A(z) = z^r A_r + z^{r+1} A_{r+1} + \cdots, r < -1$ and $A_{r+m} \in \mathfrak{gl}(n; \mathbb{C}) \ m \ge 0$. The reduction of (\dagger) to a canonical form is implemented by the natural gauge adjoint action of $GL(n; \overline{\mathfrak{F}})$ where $\overline{\mathfrak{F}}$ is the algebraic closure of the field of formal Laurent series about 0 with at most a finite pole at 0. For example, it is shown that the irregular part of the canonical form (\dagger) is determined by A_{r+m} , $0 \le m < n(|r|-1)$. The proofs utilize group theoretic techniques as well as the method of Galois descent. In particular almost all of the results generalize to the case where GL(n) and $\mathfrak{gl}(n)$ are replaced by an arbitrary affine algebraic group G over C and its Lie algebra \mathfrak{g} .

Contents

- 0. Introduction and summary
- 1. Notation. Generalities
- 2. Orbits in complex reductive Lie algebras

THE CLASSICAL CONNECTIONS

- 3. Reduction theory in the regular case
- 4. Transformations of connections with nilpotent leading coefficients
- 5. The principal level
- 6. Reduction theory over $\overline{\mathfrak{F}}$
- 7. Reduction theory over \mathcal{F}

CONNECTIONS WITH AN AFFINE ALGEBRAIC STRUCTURE GROUP

- 8. Regular connections and their monodromy
- 9. Reduction theory for arbitrary connections

References

0. Introduction and summary.

0.1. This paper presents a formal classification of meromorphic linear ordinary differential equations from a group theoretic point of view. Let