CIRCLE ACTIONS ON HOMOTOPY SPHERES WITH CODIMENSION 4 FIXED POINT SET

RONALD FINTUSHEL AND PETER SIE PAO

In this paper we give a complete equivariant classification of smooth S^1 actions on homotopy spheres with codimension 4 fixed point set and point out a relationship with a natural generalization of the twist-spinning process for knots.

Semifree S^1 actions on homotopy spheres with codimension 4 fixed point set have been classified by J. Levine; so we concentrate on actions with exceptional orbits. There are some obvious linear models for these actions. Let ξ be the standard generator of the complex representation ring of S^1 . Then in some sense the actions with one exceptional orbit type are modeled after $\xi^k \oplus \xi \oplus 0$ and those with two exceptional orbit types are modeled after $\xi^k \oplus \xi^m \oplus 0$. Let \mathbb{S}_k^n denote the set of diffeomorphism classes of pairs (Σ_k^{n-1}, Δ) where Σ^{n-1} is a homotopy (n-1)-sphere and Δ_k is a smooth Z_k -acyclic orientable codimension 2 submanifold with boundary an integral homology sphere. Similarly, for relatively prime integers k and m, let \mathbb{S}_{k}^{n} denote the set of triads $(\Sigma^{n-1}; \Delta_{k}, \Delta_{m})$ where Δ_k and Δ_m are respectively Z_k and Z_m -acyclic orientable codimension 2 smooth submanifolds meeting tangentially such that $\partial \Delta_k = \partial \Delta_m = \Delta_k \cap$ Δ_m is an integral homology sphere. In these two cases the classification theorem states that actions on homotopy n-spheres with one exceptional orbit type Z_k , or two exceptional orbit types Z_k and Z_m are in 1-1 correspondence with \mathbb{S}_{k}^{n} and $\mathbb{S}_{k,m}^{n}$. These 1-1 correspondences are realized by associating with an S^1 action on a homotopy *n*-sphere its structured orbit space and viewing Δ_k and Δ_m as the images in the orbit space of the fixed point sets of Z_k and Z_m .

That these two types of actions do not comprise all S^1 actions on (homotopy) spheres with codimension 4 fixed point set was shown by E. V. Stein in answer to a question of Frank Raymond. It turns out that all these other actions correspond in a 1-1 fashion via their structured orbit spaces to the set $\mathfrak{T}_{k,m}^n$ of diffeomorphism classes of triads $(\Sigma^{n-1}, \Delta_k, \Delta_m)$ as in the definition of $\mathfrak{S}_{k,m}^n$, except that the interiors of Δ_k and Δ_m intersect transversely in a (perhaps disconnected) n-5 manifold without boundary. This intersection manifold corresponds to the image in the orbit space of the exceptional orbits of type Z_{km} . The intersecting aspect