CIRCLE ACTIONS ON HOMOTOPY SPHERES WITH CODIMENSION 4 FIXED POINT SET

Ronald Fintushel and Peter Sie Pao

Abstract

In this paper we give a complete equivariant classification of smooth S^{1} actions on homotopy spheres with codimension 4 fixed point set and point out a relationship with a natural generalization of the twist-spinning process for knots.

Semifree S^{1} actions on homotopy spheres with codimension 4 fixed point set have been classified by J. Levine; so we concentrate on actions with exceptional orbits. There are some obvious linear models for these actions. Let ξ be the standard generator of the complex representation ring of S^{1}. Then in some sense the actions with one exceptional orbit type are modeled after $\xi^{k} \oplus \xi \oplus 0$ and those with two exceptional orbit types are modeled after $\xi^{k} \oplus \xi^{m} \oplus 0$. Let \Im_{k}^{n} denote the set of diffeomorphism classes of pairs $\left(\Sigma_{k}^{n-1}, \Delta\right)$ where Σ^{n-1} is a homotopy $(n-1)$-sphere and Δ_{k} is a smooth Z_{k}-acyclic orientable codimension 2 submanifold with boundary an integral homology sphere. Similarly, for relatively prime integers k and m, let $\Im_{k, m}^{n}$ denote the set of triads ($\Sigma^{n-1} ; \Delta_{k}, \Delta_{m}$) where Δ_{k} and Δ_{m} are respectively Z_{k} and Z_{m}-acyclic orientable codimension 2 smooth submanifolds meeting tangentially such that $\partial \Delta_{k}=\partial \Delta_{m}=\Delta_{k} \cap$ Δ_{m} is an integral homology sphere. In these two cases the classification theorem states that actions on homotopy n-spheres with one exceptional orbit type Z_{k}, or two exceptional orbit types Z_{k} and Z_{m} are in 1-1 correspondence with \mathscr{S}_{k}^{n} and $\mathscr{S}_{k, m}^{n}$. These 1-1 correspondences are realized by associating with an S^{1} action on a homotopy n-sphere its structured orbit space and viewing Δ_{k} and Δ_{m} as the images in the orbit space of the fixed point sets of Z_{k} and Z_{m}.

That these two types of actions do not comprise all S^{1} actions on (homotopy) spheres with codimension 4 fixed point set was shown by E. V. Stein in answer to a question of Frank Raymond. It turns out that all these other actions correspond in a 1-1 fashion via their structured orbit spaces to the set $\mathscr{T}_{k, m}^{n}$ of diffeomorphism classes of triads $\left(\sum^{n-1}, \Delta_{k}, \Delta_{m}\right)$ as in the definition of $\delta_{k, m}^{n}$, except that the interiors of Δ_{k} and Δ_{m} intersect transversely in a (perhaps disconnected) $n-5$ manifold without boundary. This intersection manifold corresponds to the image in the orbit space of the exceptional orbits of type $Z_{k m}$. The intersecting aspect

