SOME CONDITIONS ON THE HOMOLOGY GROUPS OF THE KOSZUL COMPLEX

CARLA MASSAZA AND ALFIO RAGUSA

In this paper we introduce the concept of a (d, i)-sequence $(d, i \in$ N) in a commutative ring A, noetherian and with identity (cf. Def. 1.1). Let K(z, A) be the Koszul complex on A, with respect to the sequence $z = z_1, \ldots, z_n$: the concept of a (d, i)-sequence is expressed in terms of the structure of $H_{i}(K(z, A))$; in particular, it turns out that z is an (n, i)-sequence iff $H_i(K(\underline{z}, A)) = 0$, and such a condition implies \underline{z} is a (d, i)-sequence for any $d \le n$. If $\overline{z}_1, \ldots, \overline{z}_h$ is a (d, i)-sequence in $_h \overline{A} =$ $A/(z_{h+1},\ldots,z_n), d \le h \le n$, then <u>z</u> is seen to be a (d, i)-sequence in A; so, in particular, if $H_i(K(\bar{z}; {}_dA)) = 0$ in ${}_dA$, then z is a (d, i)-sequence. Moreover, for i = 1, the two conditions are equivalent, so that z is a (d, 1)-sequence means precisely that $\overline{z}_1, \ldots, \overline{z}_d$ is regular in ${}_dA$. For i > 1, examples show that z is a (d, i)-sequence is a condition strictly weaker than $\bar{z}_1, \ldots, \bar{z}_h$ is a (d, i)-sequence in $_h \overline{A}$, and we investigate the relationship between those two properties. In fact, their equivalence allows us to read the depth of a quotient ring $A/(z_{h+1},...,z_n)$ in terms of the Koszul complex K(z; A) and implies, for (d, i)-sequences, properties which are a natural generalization of good properties satisfied by regular sequences, such as the depth-sensitivity of the Koszul complex. A characteristic condition for their equivalence is a kind of weak surjectivity of a natural map acting between syz^{*i*+1}($K(\underline{z}; A)$) and syz^{*i*+1}($K(\underline{z}; h\overline{A})$).

From an algebraic form of that weak surjectivity we get some sufficient conditions, in terms of weak regularity of the sequence z_{h+1}, \ldots, z_n . For instance, if z_{h+1}, \ldots, z_n is a *d*-sequence, or a relative regular sequence, or less, if z_{h+1}, \ldots, z_n is a relative regular *A*-sequence with respect to a convenient set of ideals, then <u>*z*</u> is a (d, i)-sequence in *A* implies $\overline{z}_1, \ldots, \overline{z}_h$ is a (d, i)-sequence in $h\overline{A}$.

Moreover, if \underline{z} is a (d, i)-sequence and z_{d+1}, \ldots, z_n is a regular sequence, then $H_i(K(\underline{z}; A)) = 0$, while this vanishing implies that it is possible to find x_1, \ldots, x_n in $I = (z_1, \ldots, z_n)$ such that z_1, \ldots, z_{i-1} , x_1, \ldots, x_n is a (d, i)-sequence and x_{d+1}, \ldots, x_n is a regular sequence.

In the last section we give an interpretation of our results in terms of the behaviour of some systems of linear equations.

N. 1. Let A be a noetherian ring (with 1) and $\underline{z} = z_1, \ldots, z_n$ a sequence of elements of A such that $(z_1, \ldots, z_n)A \neq A$. We denote by $K(\underline{z}; A)$ the Koszul complex with respect to \underline{z} , i.e. the differential graded algebra (DGA for short) (cf. [G-L] cap. I for a definition)

$$0 \to \bigwedge^{n} A^{n} \xrightarrow{d_{n}} \bigwedge^{n-1} A^{n} \to \cdots \to \bigwedge^{2} A^{n} \xrightarrow{d_{2}} A^{n} \xrightarrow{d_{1}} A \xrightarrow{d_{0}} sA/(\underline{z})A \to 0$$