THE SPACE OF EXTENDED ORTHOMORPHISMS IN A RIESZ SPACE

B. de Pagter

We study the space $\operatorname{Orth}^{\infty}(L)$ of extended orthomorphisms in an Archimedean Riesz space L and its analogies with the complete ring of quotients of a commutative ring with unit element. It is shown that for any uniformly complete f-algebra A with unit element, $\operatorname{Orth}^{\infty}(A)$ is isomorphic with the complete ring of quotients of A. Furthermore, it is proved that for any uniformly complete Riesz space L the space $\operatorname{Orth}^{\infty}(L)$ is isomorphic to the lateral completion of L. Finally, it is shown that for any uniformly complete Riesz space L the ring $\operatorname{Orth}^{\infty}(L)$ is von Neumann regular.

The main subject in this paper is the space $\operatorname{Orth}^{\infty}(L)$ of extended orthomorphisms in an Archimedean Riesz space L. By an extended orthomorphism we mean an order bounded linear mapping π from an order dense ideal D in L into L with the property that $\pi f \perp g$ for all $f \in D$ and $g \in L$ with $f \perp g$. As shown in [10], $\operatorname{Orth}^{\infty}(L)$ is an Archimedean f-algebra with unit element which is, in addition, laterally complete.

The definition of $\operatorname{Orth}^{\infty}(L)$ for an Archimedean Riesz space is in some sense analogous to the definition of the complete ring of quotients Q(R) of a commutative ring R with unit element (see [8], §2.3). A natural thing to do, therefore, is to compare these two objects for Archimedean *f*-algebras with unit element. In §2 of this paper it is proved that for any uniformly complete *f*-algebra A with unit element, the algebras $\operatorname{Orth}^{\infty}(A)$ and Q(A) are indeed isomorphic.

For any f-algebra A = C(X), where X is a completely regular Hausdorff space, the complete ring of quotients of A is precisely the lateral completion A^{λ} of A. So, by the above-mentioned result, in this case $Orth^{\infty}(A)$ is the lateral completion of A. In §3 we study the relation between $Orth^{\infty}(L)$ and the lateral completion L^{λ} for an arbitrary Archimedean Riesz space, and it will be shown that $Orth^{\infty}(L) = L^{\lambda}$ holds for uniformly complete Riesz spaces.

Another interesting property of the ring of quotients Q(R) of a semiprime commutative ring R with unit element is that Q(R) is von Neumann regular. In the last section of this paper it will be shown that $Orth^{\infty}(L)$ is a von Neumann regular *f*-algebra for any uniformly complete Riesz space L.