COMPACT QUOTIENTS BY C*-ACTIONS

DANIEL GROSS

Let X be a compact normal complex space on which C* acts 'in a nice manner'. We describe all invariant open subsets U of X such that the holomorphic map $U \rightarrow U/C^*$ of U onto the categorical quotient for the category of compact complex spaces, U/C^* , is locally Stein. The description depends on a partial ordering of the fixed point components which arises from the Bialynicki-Birula decompositions of X.

Introduction. Let $\rho: T \times X \to X$ be a meromorphic action, (cf. §1), of $T = \mathbb{C}^*$ on an irreducible compact normal complex analytic space X. Such an action is said to be locally linearizable if and only if given any $x \in X$ there is a T-invariant neighborhood V of x and a proper T-equivariant holomorphic embedding of V into \mathbb{C}^n with T acting linearly on \mathbb{C}^n .

In this paper we solve the following problem:

Describe all *T*-invariant Zariski open subsets U of X, such that U/T is a compact complex analytic space and $U \rightarrow U/T$ is a semi-geometric quotient (i.e. a categorical quotient which is locally Stein cf. (1.8)).

This problem has been solved by A. Bialynicki-Birula and A. Sommese, $[\mathbf{B} - \mathbf{B} + \mathbf{S}]$, under the above setting when U contains no fixed points and by A. Bialynicki-Birula and J. Swiecieka, $[\mathbf{B} - \mathbf{B} + \mathbf{Sw}]$, when the action is algebraic and X is a compact algebraic variety.

As in $[\mathbf{B} - \mathbf{B} + \mathbf{S}]$, our description of semi-geometric quotients $U \rightarrow U/T$ is intimately linked to a certain partial ordering of the fixed point components F_1, \ldots, F_r . So that we can state our results precisely we shall introduce the following notation. We assume that all analytic spaces are Hausdorff, reduced and have countable topology.

Let $\{F_1, \ldots, F_r\}$ be the connected components of the fixed point set of T, X^T . Define $\phi^+, \phi^-: X \to X^T$ by $\phi^+(x) = \lim_{t \to 0} tx$ and $\phi^-(x) = \lim_{t \to \infty} tx$, respectively.

Let $X_i^+ = \{x \in X | \phi^+(x) \in F_i\}, i = 1, ..., r, \text{ and } X_i^- = \{x \in X | \phi^-(x) \in F_i\}, i = 1, ..., r.$

An index *i* is said to be *directly less than* an index *j* if $C_{ij} = (X_i^+ - F_i) \cap (X_j^- - F_j) \neq \emptyset$. We say that *i* is *less than j*, denoted i < j, if there exists a sequence $i = i_0, \ldots, i_k = j$ such that i_l is directly less than i_{l+1} for $l = 0, \ldots, k - 1$. This relation forms an ordering of the indices $\{1, \ldots, r\}$.