COMPACT QUOTIENTS BY C*-ACTIONS

Daniel Gross

Abstract

Let X be a compact normal complex space on which \mathbf{C}^{*} acts 'in a nice manner'. We describe all invariant open subsets U of X such that the holomorphic map $U \rightarrow U / \mathbf{C}^{*}$ of U onto the categorical quotient for the category of compact complex spaces, U / \mathbf{C}^{*}, is locally Stein. The description depends on a partial ordering of the fixed point components which arises from the Bialynicki-Birula decompositions of X.

Introduction. Let $\rho: T \times X \rightarrow X$ be a meromorphic action, (cf. §1), of $T=\mathbf{C}^{*}$ on an irreducible compact normal complex analytic space X. Such an action is said to be locally linearizable if and only if given any $x \in X$ there is a T-invariant neighborhood V of x and a proper T-equivariant holomorphic embedding of V into \mathbf{C}^{n} with T acting linearly on \mathbf{C}^{n}.

In this paper we solve the following problem:
Describe all T-invariant Zariski open subsets U of X, such that U / T is a compact complex analytic space and $U \rightarrow U / T$ is a semi-geometric quotient (i.e. a categorical quotient which is locally Stein cf. (1.8)).

This problem has been solved by A. Bialynicki-Birula and A. Sommese, $[\mathbf{B}-\mathbf{B}+\mathbf{S}]$, under the above setting when U contains no fixed points and by A. Bialynicki-Birula and J. Swiecieka, $[\mathbf{B}-\mathbf{B}+\mathbf{S w}]$, when the action is algebraic and X is a compact algebraic variety.

As in $[\mathbf{B}-\mathbf{B}+\mathbf{S}]$, our description of semi-geometric quotients $U \rightarrow$ U / T is intimately linked to a certain partial ordering of the fixed point components F_{1}, \ldots, F_{r}. So that we can state our results precisely we shall introduce the following notation. We assume that all analytic spaces are Hausdorff, reduced and have countable topology.

Let $\left\{F_{1}, \ldots, F_{r}\right\}$ be the connected components of the fixed point set of T, X^{T}. Define $\phi^{+}, \phi^{-}: X \rightarrow X^{T}$ by $\phi^{+}(x)=\lim _{t \rightarrow 0} t x$ and $\phi^{-}(x)=$ $\lim _{t \rightarrow \infty} t x$, respectively.

Let $X_{i}^{+}=\left\{x \in X \mid \phi^{+}(x) \in F_{i}\right\}, \quad i=1, \ldots, r, \quad$ and $\quad X_{i}^{-}=\{x \in$ $\left.X \mid \phi^{-}(x) \in F_{i}\right\}, i=1, \ldots, r$.

An index i is said to be directly less than an index j if $C_{i j}=\left(X_{i}^{+}-F_{l}\right)$ $\cap\left(X_{j}^{-}-F_{j}\right) \neq \varnothing$. We say that i is less than j, denoted $i<j$, if there exists a sequence $i=i_{0}, \ldots, i_{k}=j$ such that i_{l} is directly less than i_{l+1} for $l=0, \ldots, k-1$. This relation forms an ordering of the indices $\{1, \ldots, r\}$.

