# AN ARTIN RELATION (MOD 2) FOR FINITE GROUP ACTIONS ON SPHERES 

Ronald M. Dotzel


#### Abstract

Recently it has been shown that whenever a finite group $G$ (not a $p$-group) acts on a homotopy sphere there is no general numerical relation which holds between the various formal dimensions of the fixed sets of $p$-subgroups ( $p$ dividing the order of $G$ ). However, if $G$ is dihedral of order $2 q$ ( $q$ an odd prime power) there is a numerical relation which holds $(\bmod 2)$. In this paper, actions of groups $G$ which are extensions of an odd order $p$-group by a cyclic 2 -group are considered and a numerical relation $(\bmod 2)$ is found to be satisfied (for such groups acting on spheres) between the various dimensions of fixed sets of certain subgroups; this relation generalises the classical Artin relation for dihedral actions on spheres.


0. Introduction. When a $p$-group $P$ acts on a $\bmod p$ homology $n$-sphere $X$, the fixed point set, $X^{H}$, of any subgroup $H$ has the $\bmod p$ homology of an $n(H)$-sphere, for some integer $n(H)$. The function from subgroups of $P$ to integers defined by $H \rightarrow n(H)$ is called the dimension function and any such function arising in this way is known to originate in a real representation of $P$ (see [2]). If $P$ is elementary abelian, the Borel identity holds (see [1, pg. 175]):

$$
n-n(P)=\sum(n(H)-n(P))
$$

(sum over all $H \leq P$ such that $P / H=\mathbf{Z}_{p}$ ). The motivation for this identity comes from consideration of representations of $P$.

Now suppose $G$ is the dihedral group $D_{p}$ ( $p$ odd prime) (a semidirect product of $\mathbf{Z}_{p}$ and $\mathbf{Z}_{2}$ via the automorphism of $\mathbf{Z}_{p}, g \rightarrow g^{-1}$ ). If $V$ is a real representation of $G$, one can by considering the real irreducible representations of $G$, write down the following Artin relation,

$$
\operatorname{dim} V^{G}=\operatorname{dim} V^{\mathbf{z}_{2}}-\left(\frac{\operatorname{dim} V-\operatorname{dim} V^{\mathbf{Z}_{p}}}{2}\right) .
$$

In [3], K. H. Dovermann and Ted Petrie show that for actions of $D_{p}$ (and more generally any non $p$-group) on a homotopy sphere one cannot expect to find a numerical relation between the various dimensions of the fixed sets (in particular for smooth actions of $D_{p}$ one cannot expect the Artin relation to hold). However, in [8, Thm. 1.3], E. Straume has shown that

