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NONOSCILLATORY FUNCTIONAL DIFFERENTIAL
EQUATIONS
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Our aim in this paper is to obtain sufficient conditions under which
certain functional differential equations have a “large” number of non-
oscillatory solutions. Using the characteristic equation of a “majorant”
delay differential equation with constant coefficients and Schauder’s
fixed point theorem, we obtain conditions under which the functional
differential equation in question has a nonoscillatory solution. Then a
known comparison theorem is employed as a tool to demonstrate that if
the functional differential equation has a nonoscillatory solution, then it
really has a “large” number of such solutions.

Our aim in this paper is to obtain sufficient conditions under which
the functional differential equation

n

(1) x'(1) + lei(t)x(t —7(1)) =0
i-

has a “large” number of nonoscillatory solutions. It is to be noted that the
literature is scarce concerning conditions under which there exist nonoscil-
latory solutions. Using the characteristic equation of a “majorant” delay
differential equation with constant coefficients and Schauder’s fixed point
theorem, we obtain conditions under which (1) has a nonoscillatory
solution. Then we employ a known comparison theorem [see 1, p. 224,
also 4, Ch. 6] as a tool to demonstrate that if (1) has a nonoscillatory
solution then it really has a “large” number of such solutions.

As it is customary, a solution is said to be oscillatory if it has
arbitrarily large zeros. A differential equation is called oscillatory if all of
its solutions oscillate; otherwise, it is called nonoscillatory. In this paper
we restrict our attention to real valued solutions x(?).

2. Non-oscillations.

THEOREM 1. Consider the differential equation

1) *(1) + ép,mx(t (1)) =0
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