# COUNTING SUBGROUPS AND TOPOLOGICAL GROUP TOPOLOGIES 

Shiferaw Berhanu, W. W. Comfort and J. D. Reid

> Let $G$ be an Abelian group with $|G|=\alpha \geq \omega, \mathscr{S}(G)$ the set of subgroups of $G, \mathscr{R}$ the set of totally bounded topological group topologies on $G, \mathscr{M}(\gamma)$ the set of topological group topologies $\mathscr{T}$ for which the character $(=$ local weight) of $\langle G, \mathscr{T}\rangle$ is equal to $\gamma \geq \omega$, and $\mathscr{B}(\gamma)=$ $\mathscr{B} \cap \mathscr{M}(\gamma)$. We prove algebraic results and topological results, as follows.
> Algebra. Either $|\mathscr{S}(G)|=2^{\alpha}$ or $|\mathscr{S}(G)|=\alpha$. If $|\mathscr{S}(G)|=\alpha$ then $\alpha=\omega$. We describe and characterize those (countable) $G$ such that $|\mathscr{S}(G)|=\omega$, and we give several examples.
> Topology. If $\gamma<\log (\alpha)$ or $\gamma>2^{\alpha}$, then $\mathscr{B}(\gamma)=\varnothing$; otherwise $|\mathscr{B}(\gamma)|=2^{\alpha} \gamma$. If $\gamma>2^{\alpha}$ then $\mathscr{M}(\gamma)=\varnothing$; if $\log (\alpha)<\gamma \leq 2^{\alpha}$ then $|\mathscr{M}(\gamma)|=2^{\alpha}$; and if $\omega \leq \gamma \leq \alpha$ then $|\mathscr{M}(\gamma)|=2^{\alpha}$.
0. Introduction and motivation. As a reading of the Synopsis may suggest, this work originated with the authors' interest in the following questions: Given an infinite Abelian group, how many topological group topologies does $G$ possess? Of these, how many may be chosen pairwise non-homeomorphic? How many metrizable? How many totally bounded? How many totally bounded and metrizable? We approached the latter questions through a result from [6] which gives a one-to-one order-preserving correspondence between the set $\mathscr{B}(G)$ of totally bounded topological group topologies for $G$ and the set of point-separating subgroups of the homomorphism group $\operatorname{Hom}(G, \mathbf{T})$. Thus it became natural-indeed neces-sary-to count the number of subgroups of a group of the form $\operatorname{Hom}(G, \mathbf{T})$. In $\S \S 1$ and 2, which we believe have algebraic interest quite independent of their topological roots, we do a bit more: We show that every uncountable Abelian group $G$ has $2^{|G|}$ subgroups, and we describe in some detail the fine algebraic structure of what we call $\omega$-groups. These are by definition the (necessarily countable) Abelian groups $G$ with fewer then $2^{|G|}$ subgroups; we show that each $\omega$-group has exactly $\omega$-many subgroups, and we describe the relationship between the $\omega$-groups and the so-called q.d. groups of Beaumont and Pierce [2].

The algebraic analysis of $\S 1$, together with the result cited from [6], allows us to describe some gross features of the partially ordered sets $\mathscr{B}(G)$. Here our work is sufficiently coarse that the various cardinal

