DETERMINING INCOMPRESSIBILITY OF SURFACES IN ALTERNATING KNOT AND LINK COMPLEMENTS

WILLIAM MENASCO

In this paper we carry out the next necessary step in the study of closed incompressible surfaces in alternating link complements — determining when a given punctured surface in an alternating link complement is incompressible, pairwise incompressible and understanding when a "peripheral tubing" operation (which will produce a closed surface) preserves the incompressibility of a surface.

1. Introduction. Let $L \subset \mathbb{R}^3 \subset S^3 = \mathbb{R}^3 \cup \{\infty\}$ be a non-split prime link which is alternating with respect to the projection $\pi: \mathbb{R}^3 \to \mathbb{R}^2$. In [M] we introduced the notion of a standard position embedding with respect to $\pi(L)$ for incompressible, pairwise incompressible surfaces in $S^3 - L$. From Theorem 3(c) of [M] we can conclude that there are only finitely many such *n*-punctured surfaces for n > 0. However, for a given surface $S \subset S^3 - L$ in standard position, no method was given in [M] for determining whether S is incompressible or pairwise incompressible. Furthermore, understanding when a "peripheral tubing" operation preserves the incompressibility of a standard position surface was not discussed in [M].

In this paper we give a method for determining when a surface in standard position is incompressible and pairwise incompressible. Using results on branched surfaces in [F-O], we adapt our new method to understanding when a "peripheral tubing" operation preserves the incompressibility. Throughout this paper we use the same notation and terminology as in [M].

In §2 we amplify on the notion of standard position.

In §3 we develop the notion of a compressing disk or pairwise compressing disk in standard position with respect to a standard positioned surface. From an analysis of a disk in standard position we produce our sought after method. In particular, the following sufficient condition for incompressibility becomes evident.

THEOREM 1. Let L be a non-split prime alternating link and suppose $S \subset S^3 - L$ is a surface in standard position. For S to be incompressible,