NOT EVERY LODATO PROXIMITY IS COVERED

K. C. CHATTOPADHYAY

In a recent paper Reed wrote, "In fact it may be that all Lodato proximities are covered. I was unable to find a counterexample". (Remark 1.10)

The purpose of this note is to show that, in general, Lodato proximities are not covered.

1. Preliminaries. A closed filter \mathcal{F} on a topological space (X, c) is a proper filter (that is, a filter which does not contain the empty set) which has a base consisting of only closed sets. Maximal (with respect to set inclusion) closed filters are all called *ultraclosed filters*. For more information on the concept of ultraclosed filters see Thron [3].

Ultrafilters are maximal proper filters on a set and grills are exactly the unions of ultrafilters. For a detailed discussion on ultrafilters and grills, see Thron [2].

A basic proximity π on a set X is a symmetric binary relation on the power set $\mathcal{P}(X)$ of X satisfying the conditions:

$$(A, B \cup C) \in \pi \Leftrightarrow (A, B) \in \pi \quad \text{or} \ (A, C) \in \pi,$$
$$A \cap B \neq \emptyset \Rightarrow (A, B) \in \pi,$$
$$(A, \emptyset) \notin \pi, \quad \forall A \subset X.$$

The pair (X, π) is called a *basic proximity space* provided π is a basic proximity on X.

For a basic proximity π on X, we define

 $c_{\pi}(A) = \{ x \in X \colon (\{x\}, A) \in \pi \} \quad \text{for all } A \subset X.$

It is easily verified that c_{π} is a symmetric (Čech) closure operator. For a basic proximity π , c_{π} need not be a Kuratowski closure operator.

A basic proximity π on X is called a *Lodato proximity* if the following condition is saitsfied:

$$(c_{\pi}(A), c_{\pi}(B)) \in \pi \Rightarrow (A, B) \in \pi.$$

If π is a Lodato proximity on X then c_{π} is a Kuratowski closure operator on X and hence (X, c_{π}) is a topological space.

Let (X, π) be a basic proximity space and \mathscr{G} be a grill on X. Then \mathscr{G} is called a π -clan if

$$(A, B) \in \pi$$
 for all A, B in \mathscr{G} .