BINOMIAL COEFFICIENTS WHOSE PRODUCTS ARE PERFECT k TH POWERS

Basil Gordon, Daihachiro Sato and Ernst Straus
In memory of Ernst Straus

Abstract

A P_{k}-set is a finite set of positions in Pascal's triangle which, when translated anywhere within the triangle, covers entries whose product is a perfect k th power. A characterization of such sets is obtained, and the minimum cardinality $f(k)$ of all P_{k}-sets is determined.

1. Introduction. In 1971, V. Hoggatt and W. Hansell [4] proved that the product of the 6 neighbors of any interior entry of the Pascal triangle is a perfect square. A corollary of this appeared as a problem on the Putnam Examination [9]. In Figure 1, for example, the product of the 6 entries enclosed in circles or squares is $360,000=600^{2}$.

The usual proof of this theorem consists in showing that the product of the circled entries is equal to the product of the entries enclosed in squares, i.e.

$$
\begin{equation*}
\binom{n-1}{r-1}\binom{n}{r+1}\binom{n+1}{r}=\binom{n-1}{r}\binom{n}{r-1}\binom{n+1}{r+1} . \tag{1}
\end{equation*}
$$

Because of the positions in Figure 1 of the factors on the 2 sides of (1), this identity has been called the Star of David property of Pascal's triangle.

To reformulate the star of David Theorem, we consider the following hexagon:

The theorem says that if this hexagon is translated in such a way that its vertices lie on entries of the Pascal triangle, the product of these entries is

