PROBLEMS AND RESULTS ON ADDITIVE PROPERTIES OF GENERAL SEQUENCES. I

P. Erdős and A. SÁrközy
Dedicated to the Memory of E. G. Straus

Abstract

Let $a_{1}<a_{2}<\cdots$ be an infinite sequence of positive integers and denote by $R(n)$ the number of solutions of $n=a_{1}+a_{j}$. The authors prove that if $F(n)$ is a monotonic increasing arithmetic function with $F(n) \rightarrow+\infty$ and $F(n)=o\left(n(\log n)^{-2}\right)$ then $|R(n)-F(n)|=$ $o\left((F(n))^{1 / 2}\right)$ cannot hold.

1. Let $\mathscr{A}=\left\{a_{1}, a_{2}, \ldots\right\}\left(a_{1}<a_{2}<\cdots\right)$ be an infinite sequence of positive integers. Denote by $R(n)$ the number of solutions of $n=a_{t}+a_{j}$. Sidon asked more than 50 years ago if there is a sequence \mathscr{A} for which for every $n>n_{0}$,

$$
\begin{equation*}
R(n)>0 \text { but for every } \varepsilon>0, \quad R(n) / n^{\varepsilon} \rightarrow 0 ? \tag{1}
\end{equation*}
$$

By use of probabilistic methods P. Erdős proved the following much stronger result:

There is a sequence \mathscr{A} so that there are two constants c_{1} and c_{2} for which for every n

$$
\begin{equation*}
c_{1} \log n<R(n)<c_{2} \log n . \tag{2}
\end{equation*}
$$

It is still a challenging problem to give a constructive proof of (2) or even of (1). We can make no contribution to this problem at the moment. An old conjecture of Erdős states that for no sequence \mathscr{A} can we have

$$
\begin{equation*}
R(n) / \log n \rightarrow c \quad(0<c<+\infty) . \tag{3}
\end{equation*}
$$

We cannot attack (3) at the moment but we can prove that if $G(n)$ is monotonic, $G(n) \rightarrow+\infty$ and $G(n)$ is of regular growth then

$$
\begin{equation*}
R(n) / G(n) \log n \rightarrow c \quad(0<c<+\infty) \tag{4}
\end{equation*}
$$

is possible. In view of the difficulty of (3) two questions are natural. Can one prove that for every \mathscr{A}

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}|R(n)-\log n|=+\infty \tag{5}
\end{equation*}
$$

and is it true that for every $(0<) c_{1}<1<c_{2}$

$$
\begin{equation*}
c_{1} \log n<R(n)<c_{2} \log n \tag{6}
\end{equation*}
$$

